Find the minimum distance from the point a to the set $X={ x=(x_1,x_2,…x_n)mid b_1x_1+b_2x_2+…+b_nx_n=c...
$begingroup$
Find the minimum distance from the point $a=(a_1,a_2,...a_n)$ to the set $$X={ x=(x_1,x_2,...x_n)mid b_1x_1+b_2x_2+...+b_nx_n=c }$$
where $ b_1^2 + b_2^2 +...+ b_n^2 gt 0 $ and $b_1, b_2,...,b_n,c in Bbb R$.
I have found so far the definition of distance from a point to a set in different books where stands that if (X,d) is a metric space $Esubset X$, $Eneq varnothing$ and $xin X$ we can define the distance from the point x to the set E in the following way
$$d(x,E):=Inf{d(x,y): y in E}$$
but I have not found any example that could help me solve this problem, and I have no Idea of how to approach it
linear-algebra multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Find the minimum distance from the point $a=(a_1,a_2,...a_n)$ to the set $$X={ x=(x_1,x_2,...x_n)mid b_1x_1+b_2x_2+...+b_nx_n=c }$$
where $ b_1^2 + b_2^2 +...+ b_n^2 gt 0 $ and $b_1, b_2,...,b_n,c in Bbb R$.
I have found so far the definition of distance from a point to a set in different books where stands that if (X,d) is a metric space $Esubset X$, $Eneq varnothing$ and $xin X$ we can define the distance from the point x to the set E in the following way
$$d(x,E):=Inf{d(x,y): y in E}$$
but I have not found any example that could help me solve this problem, and I have no Idea of how to approach it
linear-algebra multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Find the minimum distance from the point $a=(a_1,a_2,...a_n)$ to the set $$X={ x=(x_1,x_2,...x_n)mid b_1x_1+b_2x_2+...+b_nx_n=c }$$
where $ b_1^2 + b_2^2 +...+ b_n^2 gt 0 $ and $b_1, b_2,...,b_n,c in Bbb R$.
I have found so far the definition of distance from a point to a set in different books where stands that if (X,d) is a metric space $Esubset X$, $Eneq varnothing$ and $xin X$ we can define the distance from the point x to the set E in the following way
$$d(x,E):=Inf{d(x,y): y in E}$$
but I have not found any example that could help me solve this problem, and I have no Idea of how to approach it
linear-algebra multivariable-calculus
$endgroup$
Find the minimum distance from the point $a=(a_1,a_2,...a_n)$ to the set $$X={ x=(x_1,x_2,...x_n)mid b_1x_1+b_2x_2+...+b_nx_n=c }$$
where $ b_1^2 + b_2^2 +...+ b_n^2 gt 0 $ and $b_1, b_2,...,b_n,c in Bbb R$.
I have found so far the definition of distance from a point to a set in different books where stands that if (X,d) is a metric space $Esubset X$, $Eneq varnothing$ and $xin X$ we can define the distance from the point x to the set E in the following way
$$d(x,E):=Inf{d(x,y): y in E}$$
but I have not found any example that could help me solve this problem, and I have no Idea of how to approach it
linear-algebra multivariable-calculus
linear-algebra multivariable-calculus
edited Jan 14 at 7:09
Iván Galeana Aguilar
asked Jan 14 at 7:03
Iván Galeana AguilarIván Galeana Aguilar
1389
1389
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The method of Lagrange Multipliers tells you how to find the minimum value of $sumlimits_{k=1}^{n} (x_i-a_i)^{2}$ subject to the condition $sumlimits_{k=1}^{n} b_ix_i=c$. Consider the function $sumlimits_{k=1}^{n} (x_i-a_i)^{2} -lambda (sumlimits_{k=1}^{n} b_ix_i-c)$ where $lambda$ is a new parameter. The point where the minimum occurs can be found by setting derivatives w.r.t $x_1,x_2,cdots,x_n,lambda$ equal to $0$. This gives $2(x_k-a_k)-lambda b_k=0$ for eaxh $k leq n$. Solve this for $x_k$ in terms of $lambda$ and then use the given condition $sumlimits_{k=1}^{n} b_ix_i=c$ to find the value of $lambda$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072929%2ffind-the-minimum-distance-from-the-point-a-to-the-set-x-x-x-1-x-2-x-n-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The method of Lagrange Multipliers tells you how to find the minimum value of $sumlimits_{k=1}^{n} (x_i-a_i)^{2}$ subject to the condition $sumlimits_{k=1}^{n} b_ix_i=c$. Consider the function $sumlimits_{k=1}^{n} (x_i-a_i)^{2} -lambda (sumlimits_{k=1}^{n} b_ix_i-c)$ where $lambda$ is a new parameter. The point where the minimum occurs can be found by setting derivatives w.r.t $x_1,x_2,cdots,x_n,lambda$ equal to $0$. This gives $2(x_k-a_k)-lambda b_k=0$ for eaxh $k leq n$. Solve this for $x_k$ in terms of $lambda$ and then use the given condition $sumlimits_{k=1}^{n} b_ix_i=c$ to find the value of $lambda$.
$endgroup$
add a comment |
$begingroup$
The method of Lagrange Multipliers tells you how to find the minimum value of $sumlimits_{k=1}^{n} (x_i-a_i)^{2}$ subject to the condition $sumlimits_{k=1}^{n} b_ix_i=c$. Consider the function $sumlimits_{k=1}^{n} (x_i-a_i)^{2} -lambda (sumlimits_{k=1}^{n} b_ix_i-c)$ where $lambda$ is a new parameter. The point where the minimum occurs can be found by setting derivatives w.r.t $x_1,x_2,cdots,x_n,lambda$ equal to $0$. This gives $2(x_k-a_k)-lambda b_k=0$ for eaxh $k leq n$. Solve this for $x_k$ in terms of $lambda$ and then use the given condition $sumlimits_{k=1}^{n} b_ix_i=c$ to find the value of $lambda$.
$endgroup$
add a comment |
$begingroup$
The method of Lagrange Multipliers tells you how to find the minimum value of $sumlimits_{k=1}^{n} (x_i-a_i)^{2}$ subject to the condition $sumlimits_{k=1}^{n} b_ix_i=c$. Consider the function $sumlimits_{k=1}^{n} (x_i-a_i)^{2} -lambda (sumlimits_{k=1}^{n} b_ix_i-c)$ where $lambda$ is a new parameter. The point where the minimum occurs can be found by setting derivatives w.r.t $x_1,x_2,cdots,x_n,lambda$ equal to $0$. This gives $2(x_k-a_k)-lambda b_k=0$ for eaxh $k leq n$. Solve this for $x_k$ in terms of $lambda$ and then use the given condition $sumlimits_{k=1}^{n} b_ix_i=c$ to find the value of $lambda$.
$endgroup$
The method of Lagrange Multipliers tells you how to find the minimum value of $sumlimits_{k=1}^{n} (x_i-a_i)^{2}$ subject to the condition $sumlimits_{k=1}^{n} b_ix_i=c$. Consider the function $sumlimits_{k=1}^{n} (x_i-a_i)^{2} -lambda (sumlimits_{k=1}^{n} b_ix_i-c)$ where $lambda$ is a new parameter. The point where the minimum occurs can be found by setting derivatives w.r.t $x_1,x_2,cdots,x_n,lambda$ equal to $0$. This gives $2(x_k-a_k)-lambda b_k=0$ for eaxh $k leq n$. Solve this for $x_k$ in terms of $lambda$ and then use the given condition $sumlimits_{k=1}^{n} b_ix_i=c$ to find the value of $lambda$.
answered Jan 14 at 7:20
Kavi Rama MurthyKavi Rama Murthy
69.1k53169
69.1k53169
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072929%2ffind-the-minimum-distance-from-the-point-a-to-the-set-x-x-x-1-x-2-x-n-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown