How to simplify $2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2)$












1












$begingroup$


Let $k$ be a positive integer satisfying $k equiv 1 pmod 4$. Let $x in mathbb{N}$. Let $q$ be a prime number.



If
$$sigma(x) = sum_{d mid x}{d}$$
is the classical sum-of-divisors function, then how do I simplify the following expression?




$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2)$$




When $k=1$, this is just
$$2n^2 - sigma(n^2) = D(n^2)$$
where $D(x)=2x-sigma(x)$ is the deficiency of $x$.



How about when $k>1$? Does the expression have a nice form?



MY ATTEMPT



Since $k>1$ and $k equiv 1 pmod 4$, then $k geq 5$, which implies that
$$sigma(q^{frac{k-1}{2}}) = q^{frac{k-1}{2}} + ldots + q + 1 = q^{frac{k-1}{2}} + sigma(q^{frac{k-3}{2}})$$
so that we obtain
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - q^{frac{k-1}{2}} sigma(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$
$$= q^{frac{k-1}{2}} D(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$





Is my derivation correct?





Note that when $gcd(q,n)=1$, then this is just
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - sigmaleft(q^{frac{k-1}{2}} n^2right) = Dbigg(q^{frac{k-1}{2}} n^2bigg).$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Your derivation is correct.
    $endgroup$
    – Cardioid_Ass_22
    Jan 14 at 14:17










  • $begingroup$
    Thank you for your feedback, @Cardioid_Ass_22.
    $endgroup$
    – Jose Arnaldo Bebita Dris
    Jan 14 at 14:48
















1












$begingroup$


Let $k$ be a positive integer satisfying $k equiv 1 pmod 4$. Let $x in mathbb{N}$. Let $q$ be a prime number.



If
$$sigma(x) = sum_{d mid x}{d}$$
is the classical sum-of-divisors function, then how do I simplify the following expression?




$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2)$$




When $k=1$, this is just
$$2n^2 - sigma(n^2) = D(n^2)$$
where $D(x)=2x-sigma(x)$ is the deficiency of $x$.



How about when $k>1$? Does the expression have a nice form?



MY ATTEMPT



Since $k>1$ and $k equiv 1 pmod 4$, then $k geq 5$, which implies that
$$sigma(q^{frac{k-1}{2}}) = q^{frac{k-1}{2}} + ldots + q + 1 = q^{frac{k-1}{2}} + sigma(q^{frac{k-3}{2}})$$
so that we obtain
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - q^{frac{k-1}{2}} sigma(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$
$$= q^{frac{k-1}{2}} D(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$





Is my derivation correct?





Note that when $gcd(q,n)=1$, then this is just
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - sigmaleft(q^{frac{k-1}{2}} n^2right) = Dbigg(q^{frac{k-1}{2}} n^2bigg).$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Your derivation is correct.
    $endgroup$
    – Cardioid_Ass_22
    Jan 14 at 14:17










  • $begingroup$
    Thank you for your feedback, @Cardioid_Ass_22.
    $endgroup$
    – Jose Arnaldo Bebita Dris
    Jan 14 at 14:48














1












1








1


1



$begingroup$


Let $k$ be a positive integer satisfying $k equiv 1 pmod 4$. Let $x in mathbb{N}$. Let $q$ be a prime number.



If
$$sigma(x) = sum_{d mid x}{d}$$
is the classical sum-of-divisors function, then how do I simplify the following expression?




$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2)$$




When $k=1$, this is just
$$2n^2 - sigma(n^2) = D(n^2)$$
where $D(x)=2x-sigma(x)$ is the deficiency of $x$.



How about when $k>1$? Does the expression have a nice form?



MY ATTEMPT



Since $k>1$ and $k equiv 1 pmod 4$, then $k geq 5$, which implies that
$$sigma(q^{frac{k-1}{2}}) = q^{frac{k-1}{2}} + ldots + q + 1 = q^{frac{k-1}{2}} + sigma(q^{frac{k-3}{2}})$$
so that we obtain
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - q^{frac{k-1}{2}} sigma(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$
$$= q^{frac{k-1}{2}} D(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$





Is my derivation correct?





Note that when $gcd(q,n)=1$, then this is just
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - sigmaleft(q^{frac{k-1}{2}} n^2right) = Dbigg(q^{frac{k-1}{2}} n^2bigg).$$










share|cite|improve this question











$endgroup$




Let $k$ be a positive integer satisfying $k equiv 1 pmod 4$. Let $x in mathbb{N}$. Let $q$ be a prime number.



If
$$sigma(x) = sum_{d mid x}{d}$$
is the classical sum-of-divisors function, then how do I simplify the following expression?




$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2)$$




When $k=1$, this is just
$$2n^2 - sigma(n^2) = D(n^2)$$
where $D(x)=2x-sigma(x)$ is the deficiency of $x$.



How about when $k>1$? Does the expression have a nice form?



MY ATTEMPT



Since $k>1$ and $k equiv 1 pmod 4$, then $k geq 5$, which implies that
$$sigma(q^{frac{k-1}{2}}) = q^{frac{k-1}{2}} + ldots + q + 1 = q^{frac{k-1}{2}} + sigma(q^{frac{k-3}{2}})$$
so that we obtain
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - q^{frac{k-1}{2}} sigma(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$
$$= q^{frac{k-1}{2}} D(n^2) - sigma(q^{frac{k-3}{2}}) sigma(n^2)$$





Is my derivation correct?





Note that when $gcd(q,n)=1$, then this is just
$$2 q^{frac{k-1}{2}} n^2 - sigma(q^{frac{k-1}{2}})sigma(n^2) = 2 q^{frac{k-1}{2}} n^2 - sigmaleft(q^{frac{k-1}{2}} n^2right) = Dbigg(q^{frac{k-1}{2}} n^2bigg).$$







elementary-number-theory proof-verification modular-arithmetic divisor-sum arithmetic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 11:16







Jose Arnaldo Bebita Dris

















asked Jan 14 at 7:04









Jose Arnaldo Bebita DrisJose Arnaldo Bebita Dris

5,50741945




5,50741945








  • 1




    $begingroup$
    Your derivation is correct.
    $endgroup$
    – Cardioid_Ass_22
    Jan 14 at 14:17










  • $begingroup$
    Thank you for your feedback, @Cardioid_Ass_22.
    $endgroup$
    – Jose Arnaldo Bebita Dris
    Jan 14 at 14:48














  • 1




    $begingroup$
    Your derivation is correct.
    $endgroup$
    – Cardioid_Ass_22
    Jan 14 at 14:17










  • $begingroup$
    Thank you for your feedback, @Cardioid_Ass_22.
    $endgroup$
    – Jose Arnaldo Bebita Dris
    Jan 14 at 14:48








1




1




$begingroup$
Your derivation is correct.
$endgroup$
– Cardioid_Ass_22
Jan 14 at 14:17




$begingroup$
Your derivation is correct.
$endgroup$
– Cardioid_Ass_22
Jan 14 at 14:17












$begingroup$
Thank you for your feedback, @Cardioid_Ass_22.
$endgroup$
– Jose Arnaldo Bebita Dris
Jan 14 at 14:48




$begingroup$
Thank you for your feedback, @Cardioid_Ass_22.
$endgroup$
– Jose Arnaldo Bebita Dris
Jan 14 at 14:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072931%2fhow-to-simplify-2-q-frack-12-n2-sigmaq-frack-12-sigman2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072931%2fhow-to-simplify-2-q-frack-12-n2-sigmaq-frack-12-sigman2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅