Solving the eigenvalue system












0












$begingroup$


$Au_{m,n}+Bu_{m-10,n-10}+Cu_{m+10,n+10}+Du_{m,n-10}+Eu_{m-10,n}=lambda u_{m,n}$



where $A=0.01(m^2+n^2),quad B=0.1(m+n),quad C=0.1(m-n),quad D=0.1 m, quad E=0.1 n$. and $m,n$ range from $[-50,50]$. My problem is hhow to transform the equation into a matrix form.










share|cite|improve this question









$endgroup$



migrated from mathematica.stackexchange.com Jan 8 at 19:14


This question came from our site for users of Wolfram Mathematica.


















  • $begingroup$
    This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
    $endgroup$
    – Lotus
    Jan 2 at 9:37










  • $begingroup$
    This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
    $endgroup$
    – Roman
    Jan 2 at 9:37
















0












$begingroup$


$Au_{m,n}+Bu_{m-10,n-10}+Cu_{m+10,n+10}+Du_{m,n-10}+Eu_{m-10,n}=lambda u_{m,n}$



where $A=0.01(m^2+n^2),quad B=0.1(m+n),quad C=0.1(m-n),quad D=0.1 m, quad E=0.1 n$. and $m,n$ range from $[-50,50]$. My problem is hhow to transform the equation into a matrix form.










share|cite|improve this question









$endgroup$



migrated from mathematica.stackexchange.com Jan 8 at 19:14


This question came from our site for users of Wolfram Mathematica.


















  • $begingroup$
    This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
    $endgroup$
    – Lotus
    Jan 2 at 9:37










  • $begingroup$
    This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
    $endgroup$
    – Roman
    Jan 2 at 9:37














0












0








0





$begingroup$


$Au_{m,n}+Bu_{m-10,n-10}+Cu_{m+10,n+10}+Du_{m,n-10}+Eu_{m-10,n}=lambda u_{m,n}$



where $A=0.01(m^2+n^2),quad B=0.1(m+n),quad C=0.1(m-n),quad D=0.1 m, quad E=0.1 n$. and $m,n$ range from $[-50,50]$. My problem is hhow to transform the equation into a matrix form.










share|cite|improve this question









$endgroup$




$Au_{m,n}+Bu_{m-10,n-10}+Cu_{m+10,n+10}+Du_{m,n-10}+Eu_{m-10,n}=lambda u_{m,n}$



where $A=0.01(m^2+n^2),quad B=0.1(m+n),quad C=0.1(m-n),quad D=0.1 m, quad E=0.1 n$. and $m,n$ range from $[-50,50]$. My problem is hhow to transform the equation into a matrix form.







matrices linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 6:01









yun shiyun shi

1




1




migrated from mathematica.stackexchange.com Jan 8 at 19:14


This question came from our site for users of Wolfram Mathematica.









migrated from mathematica.stackexchange.com Jan 8 at 19:14


This question came from our site for users of Wolfram Mathematica.














  • $begingroup$
    This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
    $endgroup$
    – Lotus
    Jan 2 at 9:37










  • $begingroup$
    This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
    $endgroup$
    – Roman
    Jan 2 at 9:37


















  • $begingroup$
    This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
    $endgroup$
    – Lotus
    Jan 2 at 9:37










  • $begingroup$
    This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
    $endgroup$
    – Roman
    Jan 2 at 9:37
















$begingroup$
This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
$endgroup$
– Lotus
Jan 2 at 9:37




$begingroup$
This does not seem to be a Mathematica-specific question. How would one solve this outside of Mathematica ?
$endgroup$
– Lotus
Jan 2 at 9:37












$begingroup$
This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
$endgroup$
– Roman
Jan 2 at 9:37




$begingroup$
This problem is block-diagonal modulo 10: all indices $m$ that end in "1" are coupled only among each other, and all that end in "2" are coupled only among each other, etc., and the same for $n$. You can therefore set up 100 sub-problems with indices ${m,n}$ all ending the same way. This may simplify the calculation.
$endgroup$
– Roman
Jan 2 at 9:37










1 Answer
1






active

oldest

votes


















2












$begingroup$

You can set this equation into a SparseArray with



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n-10->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m+10&&n1==n+10->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m&&n1==n-10->(m-s-1)/10,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}] //ArrayFlatten;


This gets you a list of $(2s+1)^2$ equations:



Thread[X.U == [Lambda] U]
(* list of equations *)


The eigensystem is then



Eigensystem[N[X]]


If you want periodic boundary conditions expressed by the rollover function f:



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
f[a_] = Mod[a, 2s+1, -s];
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==-10 ->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==+10 && f[n1-n]==+10 ->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==0 && f[n1-n]==-10 ->(m-s-1)/10,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==0 ->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}]//ArrayFlatten;





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
    $endgroup$
    – yun shi
    Jan 3 at 8:23










  • $begingroup$
    So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
    $endgroup$
    – Roman
    Jan 3 at 18:36










  • $begingroup$
    eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
    $endgroup$
    – yun shi
    Jan 4 at 4:59










  • $begingroup$
    @yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
    $endgroup$
    – Roman
    Jan 4 at 7:28











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066600%2fsolving-the-eigenvalue-system%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

You can set this equation into a SparseArray with



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n-10->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m+10&&n1==n+10->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m&&n1==n-10->(m-s-1)/10,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}] //ArrayFlatten;


This gets you a list of $(2s+1)^2$ equations:



Thread[X.U == [Lambda] U]
(* list of equations *)


The eigensystem is then



Eigensystem[N[X]]


If you want periodic boundary conditions expressed by the rollover function f:



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
f[a_] = Mod[a, 2s+1, -s];
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==-10 ->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==+10 && f[n1-n]==+10 ->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==0 && f[n1-n]==-10 ->(m-s-1)/10,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==0 ->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}]//ArrayFlatten;





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
    $endgroup$
    – yun shi
    Jan 3 at 8:23










  • $begingroup$
    So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
    $endgroup$
    – Roman
    Jan 3 at 18:36










  • $begingroup$
    eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
    $endgroup$
    – yun shi
    Jan 4 at 4:59










  • $begingroup$
    @yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
    $endgroup$
    – Roman
    Jan 4 at 7:28
















2












$begingroup$

You can set this equation into a SparseArray with



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n-10->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m+10&&n1==n+10->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m&&n1==n-10->(m-s-1)/10,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}] //ArrayFlatten;


This gets you a list of $(2s+1)^2$ equations:



Thread[X.U == [Lambda] U]
(* list of equations *)


The eigensystem is then



Eigensystem[N[X]]


If you want periodic boundary conditions expressed by the rollover function f:



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
f[a_] = Mod[a, 2s+1, -s];
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==-10 ->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==+10 && f[n1-n]==+10 ->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==0 && f[n1-n]==-10 ->(m-s-1)/10,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==0 ->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}]//ArrayFlatten;





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
    $endgroup$
    – yun shi
    Jan 3 at 8:23










  • $begingroup$
    So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
    $endgroup$
    – Roman
    Jan 3 at 18:36










  • $begingroup$
    eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
    $endgroup$
    – yun shi
    Jan 4 at 4:59










  • $begingroup$
    @yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
    $endgroup$
    – Roman
    Jan 4 at 7:28














2












2








2





$begingroup$

You can set this equation into a SparseArray with



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n-10->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m+10&&n1==n+10->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m&&n1==n-10->(m-s-1)/10,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}] //ArrayFlatten;


This gets you a list of $(2s+1)^2$ equations:



Thread[X.U == [Lambda] U]
(* list of equations *)


The eigensystem is then



Eigensystem[N[X]]


If you want periodic boundary conditions expressed by the rollover function f:



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
f[a_] = Mod[a, 2s+1, -s];
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==-10 ->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==+10 && f[n1-n]==+10 ->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==0 && f[n1-n]==-10 ->(m-s-1)/10,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==0 ->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}]//ArrayFlatten;





share|cite|improve this answer









$endgroup$



You can set this equation into a SparseArray with



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n-10->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m+10&&n1==n+10->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/;m1==m&&n1==n-10->(m-s-1)/10,
{m_,m1_,n_,n1_}/;m1==m-10&&n1==n->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}] //ArrayFlatten;


This gets you a list of $(2s+1)^2$ equations:



Thread[X.U == [Lambda] U]
(* list of equations *)


The eigensystem is then



Eigensystem[N[X]]


If you want periodic boundary conditions expressed by the rollover function f:



s = 50;
U = Table[Subscript[u, m, n], {m, -s, s}, {n, -s, s}] // Flatten;
f[a_] = Mod[a, 2s+1, -s];
X = SparseArray[{{m_,m_,n_,n_}->((m-s-1)^2+(n-s-1)^2)/100,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==-10 ->((m-s-1)+(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==+10 && f[n1-n]==+10 ->((m-s-1)-(n-s-1))/10,
{m_,m1_,n_,n1_}/; f[m1-m]==0 && f[n1-n]==-10 ->(m-s-1)/10,
{m_,m1_,n_,n1_}/; f[m1-m]==-10 && f[n1-n]==0 ->(n-s-1)/10},
{2s+1,2s+1,2s+1,2s+1}]//ArrayFlatten;






share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 2 at 9:43









RomanRoman

1686




1686












  • $begingroup$
    Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
    $endgroup$
    – yun shi
    Jan 3 at 8:23










  • $begingroup$
    So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
    $endgroup$
    – Roman
    Jan 3 at 18:36










  • $begingroup$
    eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
    $endgroup$
    – yun shi
    Jan 4 at 4:59










  • $begingroup$
    @yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
    $endgroup$
    – Roman
    Jan 4 at 7:28


















  • $begingroup$
    Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
    $endgroup$
    – yun shi
    Jan 3 at 8:23










  • $begingroup$
    So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
    $endgroup$
    – Roman
    Jan 3 at 18:36










  • $begingroup$
    eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
    $endgroup$
    – yun shi
    Jan 4 at 4:59










  • $begingroup$
    @yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
    $endgroup$
    – Roman
    Jan 4 at 7:28
















$begingroup$
Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
$endgroup$
– yun shi
Jan 3 at 8:23




$begingroup$
Thanks a lot. Also, if I want to consider the periodic boundary condition, how do I improve the code? i.e., if $m-10<-(2s+1)$, we need $m-10rightarrow m-10+(2s+1)$ .
$endgroup$
– yun shi
Jan 3 at 8:23












$begingroup$
So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
$endgroup$
– Roman
Jan 3 at 18:36




$begingroup$
So you want $m=-51$ to be equal to $m=+50$? Or do you rather want $m=-50$ to be equal to $m=+50$? It makes a big difference how precisely you're doing the periodic connection.
$endgroup$
– Roman
Jan 3 at 18:36












$begingroup$
eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
$endgroup$
– yun shi
Jan 4 at 4:59




$begingroup$
eg., for $s=50$, the range $m$ is $[-101,101]$, but for $m=-101$, $m-10=-111$, which has exceeded the range, so I need to consider the periodic boundary condition that make $m-10=-111$ be $-111+202=91$. How should I do?
$endgroup$
– yun shi
Jan 4 at 4:59












$begingroup$
@yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
$endgroup$
– Roman
Jan 4 at 7:28




$begingroup$
@yunshi: for $s=50$, the range is $min[-50,50]$. For $m=-50$ you then find $m-10=-60mapsto-60+101=41$ using the Mod function with offset: f[a_]=Mod[a,2s+1,-s]. Try: s=50;f[a_]=Mod[a,2s+1,-s];Table[f[a],{a,-60,60}]
$endgroup$
– Roman
Jan 4 at 7:28


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066600%2fsolving-the-eigenvalue-system%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅