Integral $int_0^1 frac{dx}{prod_{n=1}^infty (1+x^n)}$












26












$begingroup$


The following integral appeared this summer on AoPS. However it received no answer until today.
$$I=lim_{nto infty } int_0^1frac{dx}{(1+x)(1+x^2)dots(1+x^n)}=int_0^1 frac{dx}{prod_{n=1}^infty (1+x^n)}$$
I have learnt recently from here that: $$frac{1}{prod_{n=1}^infty (1+x^n)}=prod_{n=1}^inftyleft(1-x^{2n-1}right)Rightarrow I=int_0^1prod_{n=1}^inftyleft(1-x^{2n-1}right)dx$$
I suspect this has a closed form since a similar integral to the last equality appeared here on MSE before; however this one is a bit different since the product goes only on odd powers and I don't see how to make a connection between the two of them, so I will appreciate some help with that.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
    $endgroup$
    – user153012
    Dec 16 '18 at 12:11






  • 4




    $begingroup$
    With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
    $endgroup$
    – James Arathoon
    Dec 19 '18 at 0:12








  • 1




    $begingroup$
    By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
    $endgroup$
    – ablmf
    Jan 14 at 19:52










  • $begingroup$
    $I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
    $endgroup$
    – Yuri Negometyanov
    Jan 15 at 17:20
















26












$begingroup$


The following integral appeared this summer on AoPS. However it received no answer until today.
$$I=lim_{nto infty } int_0^1frac{dx}{(1+x)(1+x^2)dots(1+x^n)}=int_0^1 frac{dx}{prod_{n=1}^infty (1+x^n)}$$
I have learnt recently from here that: $$frac{1}{prod_{n=1}^infty (1+x^n)}=prod_{n=1}^inftyleft(1-x^{2n-1}right)Rightarrow I=int_0^1prod_{n=1}^inftyleft(1-x^{2n-1}right)dx$$
I suspect this has a closed form since a similar integral to the last equality appeared here on MSE before; however this one is a bit different since the product goes only on odd powers and I don't see how to make a connection between the two of them, so I will appreciate some help with that.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
    $endgroup$
    – user153012
    Dec 16 '18 at 12:11






  • 4




    $begingroup$
    With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
    $endgroup$
    – James Arathoon
    Dec 19 '18 at 0:12








  • 1




    $begingroup$
    By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
    $endgroup$
    – ablmf
    Jan 14 at 19:52










  • $begingroup$
    $I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
    $endgroup$
    – Yuri Negometyanov
    Jan 15 at 17:20














26












26








26


17



$begingroup$


The following integral appeared this summer on AoPS. However it received no answer until today.
$$I=lim_{nto infty } int_0^1frac{dx}{(1+x)(1+x^2)dots(1+x^n)}=int_0^1 frac{dx}{prod_{n=1}^infty (1+x^n)}$$
I have learnt recently from here that: $$frac{1}{prod_{n=1}^infty (1+x^n)}=prod_{n=1}^inftyleft(1-x^{2n-1}right)Rightarrow I=int_0^1prod_{n=1}^inftyleft(1-x^{2n-1}right)dx$$
I suspect this has a closed form since a similar integral to the last equality appeared here on MSE before; however this one is a bit different since the product goes only on odd powers and I don't see how to make a connection between the two of them, so I will appreciate some help with that.










share|cite|improve this question











$endgroup$




The following integral appeared this summer on AoPS. However it received no answer until today.
$$I=lim_{nto infty } int_0^1frac{dx}{(1+x)(1+x^2)dots(1+x^n)}=int_0^1 frac{dx}{prod_{n=1}^infty (1+x^n)}$$
I have learnt recently from here that: $$frac{1}{prod_{n=1}^infty (1+x^n)}=prod_{n=1}^inftyleft(1-x^{2n-1}right)Rightarrow I=int_0^1prod_{n=1}^inftyleft(1-x^{2n-1}right)dx$$
I suspect this has a closed form since a similar integral to the last equality appeared here on MSE before; however this one is a bit different since the product goes only on odd powers and I don't see how to make a connection between the two of them, so I will appreciate some help with that.







integration definite-integrals closed-form infinite-product






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 18:36









Michael Wang

186215




186215










asked Dec 15 '18 at 10:28









ZackyZacky

6,9251961




6,9251961








  • 5




    $begingroup$
    The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
    $endgroup$
    – user153012
    Dec 16 '18 at 12:11






  • 4




    $begingroup$
    With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
    $endgroup$
    – James Arathoon
    Dec 19 '18 at 0:12








  • 1




    $begingroup$
    By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
    $endgroup$
    – ablmf
    Jan 14 at 19:52










  • $begingroup$
    $I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
    $endgroup$
    – Yuri Negometyanov
    Jan 15 at 17:20














  • 5




    $begingroup$
    The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
    $endgroup$
    – user153012
    Dec 16 '18 at 12:11






  • 4




    $begingroup$
    With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
    $endgroup$
    – James Arathoon
    Dec 19 '18 at 0:12








  • 1




    $begingroup$
    By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
    $endgroup$
    – ablmf
    Jan 14 at 19:52










  • $begingroup$
    $I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
    $endgroup$
    – Yuri Negometyanov
    Jan 15 at 17:20








5




5




$begingroup$
The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
$endgroup$
– user153012
Dec 16 '18 at 12:11




$begingroup$
The series expansion of the integrand is here. An alternate form of the problem is $$I = int_0^1 (q;q^2)_infty ,dq,$$ where $(a;q)_infty$ is the $q$-Pochhammer symbol.
$endgroup$
– user153012
Dec 16 '18 at 12:11




4




4




$begingroup$
With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
$endgroup$
– James Arathoon
Dec 19 '18 at 0:12






$begingroup$
With a lot of help from Mathematica I can only obtain a (conjectural) infinite series form for the integral $$I=8 pisqrt{3} sum _{n=0}^{infty } frac{p(n) sinh left(frac{1}{6} pi sqrt{48 n+23}right)}{sqrt{48 n+23} left(2 cosh left(frac{1}{3} pi sqrt{48 n+23}right)-1right)}$$ where $p(n)$ is the number of unrestricted partitions of the integer n. This leads me to suspect that $I$ does not have a closed form.
$endgroup$
– James Arathoon
Dec 19 '18 at 0:12






1




1




$begingroup$
By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
$endgroup$
– ablmf
Jan 14 at 19:52




$begingroup$
By numeric computation, this integral is about $0.42888151226615025372$. If you put it in WolframAlpha or RIES, you will see that this does not look like anything with a closed form.
$endgroup$
– ablmf
Jan 14 at 19:52












$begingroup$
$I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
$endgroup$
– Yuri Negometyanov
Jan 15 at 17:20




$begingroup$
$I=intlimits_0^1 dfrac2{(-1;x)_infty},mathrm dxapprox 0.428882.$
$endgroup$
– Yuri Negometyanov
Jan 15 at 17:20










1 Answer
1






active

oldest

votes


















1












$begingroup$

$color{brown}{textbf{Analysis of the production.}}$



Let us consider the production
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n},quad xin(0,1).$$



First,
$$prodlimits_{k=0}^{infty}(1-x^{2k+1})cdotprodlimits_{k=0}^{infty}log(1-x^{2k}) = prodlimits_{k=0}^{infty}log(1-x^k),$$
so
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n} = prodlimits_{k=0}^{infty}(1-x^{2k+1}),quad xin(0,1).tag1$$



At the second, looks right the prove
$$sumlimits_{k=0}^{infty}ln(1-x^{2k+1})
= -sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty}dfrac{x^{(2k+1)m}}{m}
= -sumlimits_{m=1}^{infty}dfrac{x^m}{m(1-x^{2m})}\
= -sumlimits_{m=1}^{infty}dfrac1{2m}left(dfrac1{1-x^m} + dfrac1{1+x^m}right)
= -dfrac12sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty} left(dfrac{x^{km}}{m}+dfrac{(-x)^{km}}{m}right),$$

$$ln p(x)= dfrac12sumlimits_{k=0}^{infty}left(ln(1-x^k)+ln(1+x^k)right),$$
$$ln p(x)= dfrac13sumlimits_{k=0}^{infty}ln(1-x^k),$$
$$p(x)=sqrt[3]{prodlimits_{k=0}^{infty}(1-x^k)} = sqrt[3]{(x;x)_infty}, tag{*}$$
where $(x,x)_infty$ is q-Pochhammer symbol.



However, identity $(*)$ $color{red}{textrm{is wrong}}$ (see Wolfram Alpha counterexample).



$color{brown}{textbf{Results.}}$



Right identity is
$$p(x)=dfrac2{(-1;x)_infty}tag2$$
(see also Wolfram Alpha example).



There are not detalized information about $q$-Pochhammer symbols, so the value of integral is calculated numerically, wherein



$$boxed{I=intlimits_0^1 p(x),mathrm dx approx 0.428882.}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    @Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
    $endgroup$
    – Yuri Negometyanov
    Jan 16 at 10:44













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040367%2fintegral-int-01-fracdx-prod-n-1-infty-1xn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$color{brown}{textbf{Analysis of the production.}}$



Let us consider the production
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n},quad xin(0,1).$$



First,
$$prodlimits_{k=0}^{infty}(1-x^{2k+1})cdotprodlimits_{k=0}^{infty}log(1-x^{2k}) = prodlimits_{k=0}^{infty}log(1-x^k),$$
so
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n} = prodlimits_{k=0}^{infty}(1-x^{2k+1}),quad xin(0,1).tag1$$



At the second, looks right the prove
$$sumlimits_{k=0}^{infty}ln(1-x^{2k+1})
= -sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty}dfrac{x^{(2k+1)m}}{m}
= -sumlimits_{m=1}^{infty}dfrac{x^m}{m(1-x^{2m})}\
= -sumlimits_{m=1}^{infty}dfrac1{2m}left(dfrac1{1-x^m} + dfrac1{1+x^m}right)
= -dfrac12sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty} left(dfrac{x^{km}}{m}+dfrac{(-x)^{km}}{m}right),$$

$$ln p(x)= dfrac12sumlimits_{k=0}^{infty}left(ln(1-x^k)+ln(1+x^k)right),$$
$$ln p(x)= dfrac13sumlimits_{k=0}^{infty}ln(1-x^k),$$
$$p(x)=sqrt[3]{prodlimits_{k=0}^{infty}(1-x^k)} = sqrt[3]{(x;x)_infty}, tag{*}$$
where $(x,x)_infty$ is q-Pochhammer symbol.



However, identity $(*)$ $color{red}{textrm{is wrong}}$ (see Wolfram Alpha counterexample).



$color{brown}{textbf{Results.}}$



Right identity is
$$p(x)=dfrac2{(-1;x)_infty}tag2$$
(see also Wolfram Alpha example).



There are not detalized information about $q$-Pochhammer symbols, so the value of integral is calculated numerically, wherein



$$boxed{I=intlimits_0^1 p(x),mathrm dx approx 0.428882.}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    @Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
    $endgroup$
    – Yuri Negometyanov
    Jan 16 at 10:44


















1












$begingroup$

$color{brown}{textbf{Analysis of the production.}}$



Let us consider the production
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n},quad xin(0,1).$$



First,
$$prodlimits_{k=0}^{infty}(1-x^{2k+1})cdotprodlimits_{k=0}^{infty}log(1-x^{2k}) = prodlimits_{k=0}^{infty}log(1-x^k),$$
so
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n} = prodlimits_{k=0}^{infty}(1-x^{2k+1}),quad xin(0,1).tag1$$



At the second, looks right the prove
$$sumlimits_{k=0}^{infty}ln(1-x^{2k+1})
= -sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty}dfrac{x^{(2k+1)m}}{m}
= -sumlimits_{m=1}^{infty}dfrac{x^m}{m(1-x^{2m})}\
= -sumlimits_{m=1}^{infty}dfrac1{2m}left(dfrac1{1-x^m} + dfrac1{1+x^m}right)
= -dfrac12sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty} left(dfrac{x^{km}}{m}+dfrac{(-x)^{km}}{m}right),$$

$$ln p(x)= dfrac12sumlimits_{k=0}^{infty}left(ln(1-x^k)+ln(1+x^k)right),$$
$$ln p(x)= dfrac13sumlimits_{k=0}^{infty}ln(1-x^k),$$
$$p(x)=sqrt[3]{prodlimits_{k=0}^{infty}(1-x^k)} = sqrt[3]{(x;x)_infty}, tag{*}$$
where $(x,x)_infty$ is q-Pochhammer symbol.



However, identity $(*)$ $color{red}{textrm{is wrong}}$ (see Wolfram Alpha counterexample).



$color{brown}{textbf{Results.}}$



Right identity is
$$p(x)=dfrac2{(-1;x)_infty}tag2$$
(see also Wolfram Alpha example).



There are not detalized information about $q$-Pochhammer symbols, so the value of integral is calculated numerically, wherein



$$boxed{I=intlimits_0^1 p(x),mathrm dx approx 0.428882.}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    @Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
    $endgroup$
    – Yuri Negometyanov
    Jan 16 at 10:44
















1












1








1





$begingroup$

$color{brown}{textbf{Analysis of the production.}}$



Let us consider the production
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n},quad xin(0,1).$$



First,
$$prodlimits_{k=0}^{infty}(1-x^{2k+1})cdotprodlimits_{k=0}^{infty}log(1-x^{2k}) = prodlimits_{k=0}^{infty}log(1-x^k),$$
so
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n} = prodlimits_{k=0}^{infty}(1-x^{2k+1}),quad xin(0,1).tag1$$



At the second, looks right the prove
$$sumlimits_{k=0}^{infty}ln(1-x^{2k+1})
= -sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty}dfrac{x^{(2k+1)m}}{m}
= -sumlimits_{m=1}^{infty}dfrac{x^m}{m(1-x^{2m})}\
= -sumlimits_{m=1}^{infty}dfrac1{2m}left(dfrac1{1-x^m} + dfrac1{1+x^m}right)
= -dfrac12sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty} left(dfrac{x^{km}}{m}+dfrac{(-x)^{km}}{m}right),$$

$$ln p(x)= dfrac12sumlimits_{k=0}^{infty}left(ln(1-x^k)+ln(1+x^k)right),$$
$$ln p(x)= dfrac13sumlimits_{k=0}^{infty}ln(1-x^k),$$
$$p(x)=sqrt[3]{prodlimits_{k=0}^{infty}(1-x^k)} = sqrt[3]{(x;x)_infty}, tag{*}$$
where $(x,x)_infty$ is q-Pochhammer symbol.



However, identity $(*)$ $color{red}{textrm{is wrong}}$ (see Wolfram Alpha counterexample).



$color{brown}{textbf{Results.}}$



Right identity is
$$p(x)=dfrac2{(-1;x)_infty}tag2$$
(see also Wolfram Alpha example).



There are not detalized information about $q$-Pochhammer symbols, so the value of integral is calculated numerically, wherein



$$boxed{I=intlimits_0^1 p(x),mathrm dx approx 0.428882.}$$






share|cite|improve this answer











$endgroup$



$color{brown}{textbf{Analysis of the production.}}$



Let us consider the production
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n},quad xin(0,1).$$



First,
$$prodlimits_{k=0}^{infty}(1-x^{2k+1})cdotprodlimits_{k=0}^{infty}log(1-x^{2k}) = prodlimits_{k=0}^{infty}log(1-x^k),$$
so
$$p(x)=prodlimits_{n=0}^{infty}dfrac1{1+x^n} = prodlimits_{k=0}^{infty}(1-x^{2k+1}),quad xin(0,1).tag1$$



At the second, looks right the prove
$$sumlimits_{k=0}^{infty}ln(1-x^{2k+1})
= -sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty}dfrac{x^{(2k+1)m}}{m}
= -sumlimits_{m=1}^{infty}dfrac{x^m}{m(1-x^{2m})}\
= -sumlimits_{m=1}^{infty}dfrac1{2m}left(dfrac1{1-x^m} + dfrac1{1+x^m}right)
= -dfrac12sumlimits_{m=1}^{infty}sumlimits_{k=0}^{infty} left(dfrac{x^{km}}{m}+dfrac{(-x)^{km}}{m}right),$$

$$ln p(x)= dfrac12sumlimits_{k=0}^{infty}left(ln(1-x^k)+ln(1+x^k)right),$$
$$ln p(x)= dfrac13sumlimits_{k=0}^{infty}ln(1-x^k),$$
$$p(x)=sqrt[3]{prodlimits_{k=0}^{infty}(1-x^k)} = sqrt[3]{(x;x)_infty}, tag{*}$$
where $(x,x)_infty$ is q-Pochhammer symbol.



However, identity $(*)$ $color{red}{textrm{is wrong}}$ (see Wolfram Alpha counterexample).



$color{brown}{textbf{Results.}}$



Right identity is
$$p(x)=dfrac2{(-1;x)_infty}tag2$$
(see also Wolfram Alpha example).



There are not detalized information about $q$-Pochhammer symbols, so the value of integral is calculated numerically, wherein



$$boxed{I=intlimits_0^1 p(x),mathrm dx approx 0.428882.}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 15 at 18:32

























answered Jan 13 at 13:15









Yuri NegometyanovYuri Negometyanov

11.8k1729




11.8k1729








  • 1




    $begingroup$
    @Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
    $endgroup$
    – Yuri Negometyanov
    Jan 16 at 10:44
















  • 1




    $begingroup$
    @Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
    $endgroup$
    – Yuri Negometyanov
    Jan 16 at 10:44










1




1




$begingroup$
@Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
$endgroup$
– Yuri Negometyanov
Jan 16 at 10:44






$begingroup$
@Zacky A possible error in the proof is a permutation of the members of a two-dimensional alternating signs sequence.
$endgroup$
– Yuri Negometyanov
Jan 16 at 10:44




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040367%2fintegral-int-01-fracdx-prod-n-1-infty-1xn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg