Relationship between Catalan's constant and $pi$












12














How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question




















  • 1




    Hello. I hope this and this will help you.
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • Are you sure that your series is convergent?
    – FDP
    Dec 27 '18 at 9:11










  • @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    – clathratus
    Dec 27 '18 at 9:14










  • @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    – clathratus
    Dec 27 '18 at 9:32
















12














How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question




















  • 1




    Hello. I hope this and this will help you.
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • Are you sure that your series is convergent?
    – FDP
    Dec 27 '18 at 9:11










  • @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    – clathratus
    Dec 27 '18 at 9:14










  • @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    – clathratus
    Dec 27 '18 at 9:32














12












12








12


3





How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question















How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$







integration sequences-and-series pi constants






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 21:49

























asked Dec 27 '18 at 8:45









clathratus

3,213331




3,213331








  • 1




    Hello. I hope this and this will help you.
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • Are you sure that your series is convergent?
    – FDP
    Dec 27 '18 at 9:11










  • @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    – clathratus
    Dec 27 '18 at 9:14










  • @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    – clathratus
    Dec 27 '18 at 9:32














  • 1




    Hello. I hope this and this will help you.
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • Are you sure that your series is convergent?
    – FDP
    Dec 27 '18 at 9:11










  • @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    – clathratus
    Dec 27 '18 at 9:14










  • @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    – clathratus
    Dec 27 '18 at 9:32








1




1




Hello. I hope this and this will help you.
– Rohan
Dec 27 '18 at 8:50




Hello. I hope this and this will help you.
– Rohan
Dec 27 '18 at 8:50




1




1




The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
– Jack D'Aurizio
Dec 27 '18 at 9:03




The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
– Jack D'Aurizio
Dec 27 '18 at 9:03












Are you sure that your series is convergent?
– FDP
Dec 27 '18 at 9:11




Are you sure that your series is convergent?
– FDP
Dec 27 '18 at 9:11












@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
– clathratus
Dec 27 '18 at 9:14




@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
– clathratus
Dec 27 '18 at 9:14












@JackD'Aurizio Thank you for that link, it's a fascinating paper!
– clathratus
Dec 27 '18 at 9:32




@JackD'Aurizio Thank you for that link, it's a fascinating paper!
– clathratus
Dec 27 '18 at 9:32










5 Answers
5






active

oldest

votes


















12














begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






share|cite|improve this answer































    8














    As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






    share|cite|improve this answer























    • These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
      – clathratus
      Dec 27 '18 at 9:00






    • 1




      Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
      – TheSimpliFire
      Dec 27 '18 at 9:03






    • 1




      Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
      – Jack D'Aurizio
      Dec 27 '18 at 9:05



















    8














    Let us give a self-contained proof of Ramanujan's identity
    $$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
    We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
    $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
    such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
    $$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
    Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
    $$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
    hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
    $$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
    QED.



    This approach is powerful enough to let you compute much worse.






    share|cite|improve this answer























    • An elementary proof is possible using Wallis formula. (see my answer)
      – FDP
      Dec 27 '18 at 18:58










    • What is the $P_m(cdots)$ function here?
      – clathratus
      yesterday






    • 1




      @clathratus: $P_m$ is the $m$-th Legendre polynomial.
      – Jack D'Aurizio
      yesterday



















    8














    For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
    $$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






    share|cite|improve this answer

















    • 1




      In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
      – FDP
      Dec 27 '18 at 11:26








    • 1




      Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
      – FDP
      Dec 27 '18 at 11:33





















    3














    Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




    A nice coincidence:



    begin{align*}
    frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
    frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
    end{align*}

    and the variation
    begin{align*}
    frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
    end{align*}







    Series:



    begin{align*}
    sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
    sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
    end{align*}



    A series obtained by Ramanujan:



    begin{align*}
    G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
    end{align*}







    Integrals:



    begin{align*}
    4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
    end{align*}







    share|cite|improve this answer





















    • These are really nice (+1). Thanks for your answer
      – clathratus
      Dec 27 '18 at 19:11






    • 1




      @clathratus: You're welcome.
      – Markus Scheuer
      Dec 27 '18 at 19:13











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    5 Answers
    5






    active

    oldest

    votes








    5 Answers
    5






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    12














    begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



    (see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



    From the same source,



    begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



    ADDENDUM:



    Proof for (1),



    It is well known that for $ngeq 0$ integer,



    begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



    (Wallis formula)



    Therefore for $ngeq 0$ integer,



    begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



    therefore,



    begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
    &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
    &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
    end{align}



    Perform the change of variable $u=tan x$,$v=tan y$,



    begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
    int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
    &=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
    &=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
    &=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
    &=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
    end{align}



    Perform the change of variable $y=dfrac{1}{x}$,



    begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
    end{align}



    Perform the change of variable $y=arctan x$,



    begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
    ,dx\
    &=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
    &=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
    end{align}



    Perform the change of variable $y=frac{x}{2}$,



    begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
    -piint_0^{frac{pi}{4}}ln(tan x),dx\
    &=pitimes text{G}\
    end{align}



    Therefore,



    begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






    share|cite|improve this answer




























      12














      begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



      (see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



      From the same source,



      begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



      ADDENDUM:



      Proof for (1),



      It is well known that for $ngeq 0$ integer,



      begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



      (Wallis formula)



      Therefore for $ngeq 0$ integer,



      begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



      therefore,



      begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
      &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
      &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
      end{align}



      Perform the change of variable $u=tan x$,$v=tan y$,



      begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
      int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
      &=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
      &=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
      &=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
      &=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
      end{align}



      Perform the change of variable $y=dfrac{1}{x}$,



      begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
      end{align}



      Perform the change of variable $y=arctan x$,



      begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
      ,dx\
      &=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
      &=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
      end{align}



      Perform the change of variable $y=frac{x}{2}$,



      begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
      -piint_0^{frac{pi}{4}}ln(tan x),dx\
      &=pitimes text{G}\
      end{align}



      Therefore,



      begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






      share|cite|improve this answer


























        12












        12








        12






        begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



        (see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



        From the same source,



        begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



        ADDENDUM:



        Proof for (1),



        It is well known that for $ngeq 0$ integer,



        begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



        (Wallis formula)



        Therefore for $ngeq 0$ integer,



        begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



        therefore,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
        &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
        &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
        end{align}



        Perform the change of variable $u=tan x$,$v=tan y$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
        int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
        &=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
        &=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
        &=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
        &=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
        end{align}



        Perform the change of variable $y=dfrac{1}{x}$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
        end{align}



        Perform the change of variable $y=arctan x$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
        ,dx\
        &=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
        &=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
        end{align}



        Perform the change of variable $y=frac{x}{2}$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
        -piint_0^{frac{pi}{4}}ln(tan x),dx\
        &=pitimes text{G}\
        end{align}



        Therefore,



        begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






        share|cite|improve this answer














        begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



        (see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



        From the same source,



        begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



        ADDENDUM:



        Proof for (1),



        It is well known that for $ngeq 0$ integer,



        begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



        (Wallis formula)



        Therefore for $ngeq 0$ integer,



        begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



        therefore,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
        &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
        &=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
        end{align}



        Perform the change of variable $u=tan x$,$v=tan y$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
        int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
        &=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
        &=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
        &=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
        &=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
        end{align}



        Perform the change of variable $y=dfrac{1}{x}$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
        end{align}



        Perform the change of variable $y=arctan x$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
        ,dx\
        &=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
        &=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
        end{align}



        Perform the change of variable $y=frac{x}{2}$,



        begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
        -piint_0^{frac{pi}{4}}ln(tan x),dx\
        &=pitimes text{G}\
        end{align}



        Therefore,



        begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 27 '18 at 18:54

























        answered Dec 27 '18 at 9:36









        FDP

        4,92911324




        4,92911324























            8














            As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






            share|cite|improve this answer























            • These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
              – clathratus
              Dec 27 '18 at 9:00






            • 1




              Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
              – TheSimpliFire
              Dec 27 '18 at 9:03






            • 1




              Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
              – Jack D'Aurizio
              Dec 27 '18 at 9:05
















            8














            As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






            share|cite|improve this answer























            • These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
              – clathratus
              Dec 27 '18 at 9:00






            • 1




              Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
              – TheSimpliFire
              Dec 27 '18 at 9:03






            • 1




              Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
              – Jack D'Aurizio
              Dec 27 '18 at 9:05














            8












            8








            8






            As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






            share|cite|improve this answer














            As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 27 '18 at 9:05

























            answered Dec 27 '18 at 8:54









            TheSimpliFire

            12.4k62259




            12.4k62259












            • These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
              – clathratus
              Dec 27 '18 at 9:00






            • 1




              Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
              – TheSimpliFire
              Dec 27 '18 at 9:03






            • 1




              Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
              – Jack D'Aurizio
              Dec 27 '18 at 9:05


















            • These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
              – clathratus
              Dec 27 '18 at 9:00






            • 1




              Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
              – TheSimpliFire
              Dec 27 '18 at 9:03






            • 1




              Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
              – Jack D'Aurizio
              Dec 27 '18 at 9:05
















            These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
            – clathratus
            Dec 27 '18 at 9:00




            These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
            – clathratus
            Dec 27 '18 at 9:00




            1




            1




            Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
            – TheSimpliFire
            Dec 27 '18 at 9:03




            Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
            – TheSimpliFire
            Dec 27 '18 at 9:03




            1




            1




            Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
            – Jack D'Aurizio
            Dec 27 '18 at 9:05




            Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
            – Jack D'Aurizio
            Dec 27 '18 at 9:05











            8














            Let us give a self-contained proof of Ramanujan's identity
            $$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
            We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
            such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
            $$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
            Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
            $$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
            hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
            $$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
            QED.



            This approach is powerful enough to let you compute much worse.






            share|cite|improve this answer























            • An elementary proof is possible using Wallis formula. (see my answer)
              – FDP
              Dec 27 '18 at 18:58










            • What is the $P_m(cdots)$ function here?
              – clathratus
              yesterday






            • 1




              @clathratus: $P_m$ is the $m$-th Legendre polynomial.
              – Jack D'Aurizio
              yesterday
















            8














            Let us give a self-contained proof of Ramanujan's identity
            $$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
            We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
            such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
            $$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
            Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
            $$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
            hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
            $$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
            QED.



            This approach is powerful enough to let you compute much worse.






            share|cite|improve this answer























            • An elementary proof is possible using Wallis formula. (see my answer)
              – FDP
              Dec 27 '18 at 18:58










            • What is the $P_m(cdots)$ function here?
              – clathratus
              yesterday






            • 1




              @clathratus: $P_m$ is the $m$-th Legendre polynomial.
              – Jack D'Aurizio
              yesterday














            8












            8








            8






            Let us give a self-contained proof of Ramanujan's identity
            $$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
            We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
            such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
            $$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
            Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
            $$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
            hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
            $$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
            QED.



            This approach is powerful enough to let you compute much worse.






            share|cite|improve this answer














            Let us give a self-contained proof of Ramanujan's identity
            $$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
            We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
            such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
            $$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
            Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
            $$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
            hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
            $$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
            QED.



            This approach is powerful enough to let you compute much worse.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 27 '18 at 10:31

























            answered Dec 27 '18 at 10:25









            Jack D'Aurizio

            287k33279656




            287k33279656












            • An elementary proof is possible using Wallis formula. (see my answer)
              – FDP
              Dec 27 '18 at 18:58










            • What is the $P_m(cdots)$ function here?
              – clathratus
              yesterday






            • 1




              @clathratus: $P_m$ is the $m$-th Legendre polynomial.
              – Jack D'Aurizio
              yesterday


















            • An elementary proof is possible using Wallis formula. (see my answer)
              – FDP
              Dec 27 '18 at 18:58










            • What is the $P_m(cdots)$ function here?
              – clathratus
              yesterday






            • 1




              @clathratus: $P_m$ is the $m$-th Legendre polynomial.
              – Jack D'Aurizio
              yesterday
















            An elementary proof is possible using Wallis formula. (see my answer)
            – FDP
            Dec 27 '18 at 18:58




            An elementary proof is possible using Wallis formula. (see my answer)
            – FDP
            Dec 27 '18 at 18:58












            What is the $P_m(cdots)$ function here?
            – clathratus
            yesterday




            What is the $P_m(cdots)$ function here?
            – clathratus
            yesterday




            1




            1




            @clathratus: $P_m$ is the $m$-th Legendre polynomial.
            – Jack D'Aurizio
            yesterday




            @clathratus: $P_m$ is the $m$-th Legendre polynomial.
            – Jack D'Aurizio
            yesterday











            8














            For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
            $$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






            share|cite|improve this answer

















            • 1




              In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
              – FDP
              Dec 27 '18 at 11:26








            • 1




              Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
              – FDP
              Dec 27 '18 at 11:33


















            8














            For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
            $$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






            share|cite|improve this answer

















            • 1




              In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
              – FDP
              Dec 27 '18 at 11:26








            • 1




              Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
              – FDP
              Dec 27 '18 at 11:33
















            8












            8








            8






            For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
            $$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






            share|cite|improve this answer












            For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
            $$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 27 '18 at 10:56









            Zacky

            4,9341750




            4,9341750








            • 1




              In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
              – FDP
              Dec 27 '18 at 11:26








            • 1




              Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
              – FDP
              Dec 27 '18 at 11:33
















            • 1




              In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
              – FDP
              Dec 27 '18 at 11:26








            • 1




              Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
              – FDP
              Dec 27 '18 at 11:33










            1




            1




            In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
            – FDP
            Dec 27 '18 at 11:26






            In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
            – FDP
            Dec 27 '18 at 11:26






            1




            1




            Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
            – FDP
            Dec 27 '18 at 11:33






            Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
            – FDP
            Dec 27 '18 at 11:33













            3














            Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




            A nice coincidence:



            begin{align*}
            frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
            frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
            end{align*}

            and the variation
            begin{align*}
            frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
            end{align*}







            Series:



            begin{align*}
            sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
            sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
            end{align*}



            A series obtained by Ramanujan:



            begin{align*}
            G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
            end{align*}







            Integrals:



            begin{align*}
            4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
            end{align*}







            share|cite|improve this answer





















            • These are really nice (+1). Thanks for your answer
              – clathratus
              Dec 27 '18 at 19:11






            • 1




              @clathratus: You're welcome.
              – Markus Scheuer
              Dec 27 '18 at 19:13
















            3














            Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




            A nice coincidence:



            begin{align*}
            frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
            frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
            end{align*}

            and the variation
            begin{align*}
            frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
            end{align*}







            Series:



            begin{align*}
            sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
            sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
            end{align*}



            A series obtained by Ramanujan:



            begin{align*}
            G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
            end{align*}







            Integrals:



            begin{align*}
            4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
            end{align*}







            share|cite|improve this answer





















            • These are really nice (+1). Thanks for your answer
              – clathratus
              Dec 27 '18 at 19:11






            • 1




              @clathratus: You're welcome.
              – Markus Scheuer
              Dec 27 '18 at 19:13














            3












            3








            3






            Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




            A nice coincidence:



            begin{align*}
            frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
            frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
            end{align*}

            and the variation
            begin{align*}
            frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
            end{align*}







            Series:



            begin{align*}
            sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
            sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
            end{align*}



            A series obtained by Ramanujan:



            begin{align*}
            G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
            end{align*}







            Integrals:



            begin{align*}
            4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
            end{align*}







            share|cite|improve this answer












            Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




            A nice coincidence:



            begin{align*}
            frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
            frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
            end{align*}

            and the variation
            begin{align*}
            frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
            end{align*}







            Series:



            begin{align*}
            sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
            sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
            end{align*}



            A series obtained by Ramanujan:



            begin{align*}
            G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
            end{align*}







            Integrals:



            begin{align*}
            4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
            end{align*}








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 27 '18 at 14:46









            Markus Scheuer

            60.2k455143




            60.2k455143












            • These are really nice (+1). Thanks for your answer
              – clathratus
              Dec 27 '18 at 19:11






            • 1




              @clathratus: You're welcome.
              – Markus Scheuer
              Dec 27 '18 at 19:13


















            • These are really nice (+1). Thanks for your answer
              – clathratus
              Dec 27 '18 at 19:11






            • 1




              @clathratus: You're welcome.
              – Markus Scheuer
              Dec 27 '18 at 19:13
















            These are really nice (+1). Thanks for your answer
            – clathratus
            Dec 27 '18 at 19:11




            These are really nice (+1). Thanks for your answer
            – clathratus
            Dec 27 '18 at 19:11




            1




            1




            @clathratus: You're welcome.
            – Markus Scheuer
            Dec 27 '18 at 19:13




            @clathratus: You're welcome.
            – Markus Scheuer
            Dec 27 '18 at 19:13


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅