Upper bound for ratio as a function of terms on the LHS
$begingroup$
I've recently been stumped over the following inequality. Suppose $x,y ge 0$ and $a > 1.$ Do there exist constants $c_1, c_2, c_3 in [0,infty)$ which do not depend on $x$ or $y$ such that $$frac{a + frac{x}{2y}}{a-frac{1}{2}} le c_1x + c_2y + frac{c_3}{y}$$
Thanks in advance for your help.
real-analysis calculus algebra-precalculus inequality
$endgroup$
add a comment |
$begingroup$
I've recently been stumped over the following inequality. Suppose $x,y ge 0$ and $a > 1.$ Do there exist constants $c_1, c_2, c_3 in [0,infty)$ which do not depend on $x$ or $y$ such that $$frac{a + frac{x}{2y}}{a-frac{1}{2}} le c_1x + c_2y + frac{c_3}{y}$$
Thanks in advance for your help.
real-analysis calculus algebra-precalculus inequality
$endgroup$
add a comment |
$begingroup$
I've recently been stumped over the following inequality. Suppose $x,y ge 0$ and $a > 1.$ Do there exist constants $c_1, c_2, c_3 in [0,infty)$ which do not depend on $x$ or $y$ such that $$frac{a + frac{x}{2y}}{a-frac{1}{2}} le c_1x + c_2y + frac{c_3}{y}$$
Thanks in advance for your help.
real-analysis calculus algebra-precalculus inequality
$endgroup$
I've recently been stumped over the following inequality. Suppose $x,y ge 0$ and $a > 1.$ Do there exist constants $c_1, c_2, c_3 in [0,infty)$ which do not depend on $x$ or $y$ such that $$frac{a + frac{x}{2y}}{a-frac{1}{2}} le c_1x + c_2y + frac{c_3}{y}$$
Thanks in advance for your help.
real-analysis calculus algebra-precalculus inequality
real-analysis calculus algebra-precalculus inequality
asked Jan 16 at 20:39
Jack BurkeJack Burke
524
524
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider the sequence $(x_n,y_n)=(n,frac{1}{n})$. Plugging in gives you:
$$frac{a + frac{n^2}{2}}{a-frac{1}{2}} le c_1n + c_2frac{1}{n} + c_3n$$
Sending $nto infty$ yields a contradiction (why?).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076261%2fupper-bound-for-ratio-as-a-function-of-terms-on-the-lhs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the sequence $(x_n,y_n)=(n,frac{1}{n})$. Plugging in gives you:
$$frac{a + frac{n^2}{2}}{a-frac{1}{2}} le c_1n + c_2frac{1}{n} + c_3n$$
Sending $nto infty$ yields a contradiction (why?).
$endgroup$
add a comment |
$begingroup$
Consider the sequence $(x_n,y_n)=(n,frac{1}{n})$. Plugging in gives you:
$$frac{a + frac{n^2}{2}}{a-frac{1}{2}} le c_1n + c_2frac{1}{n} + c_3n$$
Sending $nto infty$ yields a contradiction (why?).
$endgroup$
add a comment |
$begingroup$
Consider the sequence $(x_n,y_n)=(n,frac{1}{n})$. Plugging in gives you:
$$frac{a + frac{n^2}{2}}{a-frac{1}{2}} le c_1n + c_2frac{1}{n} + c_3n$$
Sending $nto infty$ yields a contradiction (why?).
$endgroup$
Consider the sequence $(x_n,y_n)=(n,frac{1}{n})$. Plugging in gives you:
$$frac{a + frac{n^2}{2}}{a-frac{1}{2}} le c_1n + c_2frac{1}{n} + c_3n$$
Sending $nto infty$ yields a contradiction (why?).
answered Jan 16 at 20:46
F. ConradF. Conrad
1,300412
1,300412
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076261%2fupper-bound-for-ratio-as-a-function-of-terms-on-the-lhs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown