Dirichlet kernel inequality












0












$begingroup$


Let's define
$$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
where $D_{n}(t)$ is Dirichlet Kernel



$$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$



I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$



Any ideas, clues or hints on how to prove it? Something to start from?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let's define
    $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
    where $D_{n}(t)$ is Dirichlet Kernel



    $$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$



    I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$



    Any ideas, clues or hints on how to prove it? Something to start from?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let's define
      $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
      where $D_{n}(t)$ is Dirichlet Kernel



      $$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$



      I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$



      Any ideas, clues or hints on how to prove it? Something to start from?










      share|cite|improve this question











      $endgroup$




      Let's define
      $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
      where $D_{n}(t)$ is Dirichlet Kernel



      $$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$



      I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$



      Any ideas, clues or hints on how to prove it? Something to start from?







      real-analysis analysis fourier-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 20:09









      AEngineer

      1,6521318




      1,6521318










      asked Jan 16 at 20:02









      BreadBread

      104




      104






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          All you need to know is that $3 < pi < 4$ and $e > 2$.



          As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,



          and $ln pi < log_2 4 = 2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you kindly. :D
            $endgroup$
            – Bread
            Jan 25 at 1:04



















          0












          $begingroup$

          What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
          After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$



          Any idea how to get 3 in this?






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076221%2fdirichlet-kernel-inequality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            All you need to know is that $3 < pi < 4$ and $e > 2$.



            As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,



            and $ln pi < log_2 4 = 2$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you kindly. :D
              $endgroup$
              – Bread
              Jan 25 at 1:04
















            0












            $begingroup$

            All you need to know is that $3 < pi < 4$ and $e > 2$.



            As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,



            and $ln pi < log_2 4 = 2$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you kindly. :D
              $endgroup$
              – Bread
              Jan 25 at 1:04














            0












            0








            0





            $begingroup$

            All you need to know is that $3 < pi < 4$ and $e > 2$.



            As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,



            and $ln pi < log_2 4 = 2$.






            share|cite|improve this answer









            $endgroup$



            All you need to know is that $3 < pi < 4$ and $e > 2$.



            As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,



            and $ln pi < log_2 4 = 2$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 24 at 20:42









            Umberto P.Umberto P.

            40.4k13370




            40.4k13370












            • $begingroup$
              Thank you kindly. :D
              $endgroup$
              – Bread
              Jan 25 at 1:04


















            • $begingroup$
              Thank you kindly. :D
              $endgroup$
              – Bread
              Jan 25 at 1:04
















            $begingroup$
            Thank you kindly. :D
            $endgroup$
            – Bread
            Jan 25 at 1:04




            $begingroup$
            Thank you kindly. :D
            $endgroup$
            – Bread
            Jan 25 at 1:04











            0












            $begingroup$

            What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
            After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$



            Any idea how to get 3 in this?






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
              After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$



              Any idea how to get 3 in this?






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
                After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$



                Any idea how to get 3 in this?






                share|cite|improve this answer









                $endgroup$



                What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
                After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$



                Any idea how to get 3 in this?







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 24 at 17:07









                BreadBread

                104




                104






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076221%2fdirichlet-kernel-inequality%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    張江高科駅