Dirichlet kernel inequality
$begingroup$
Let's define
$$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
where $D_{n}(t)$ is Dirichlet Kernel
$$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$
I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$
Any ideas, clues or hints on how to prove it? Something to start from?
real-analysis analysis fourier-series
$endgroup$
add a comment |
$begingroup$
Let's define
$$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
where $D_{n}(t)$ is Dirichlet Kernel
$$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$
I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$
Any ideas, clues or hints on how to prove it? Something to start from?
real-analysis analysis fourier-series
$endgroup$
add a comment |
$begingroup$
Let's define
$$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
where $D_{n}(t)$ is Dirichlet Kernel
$$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$
I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$
Any ideas, clues or hints on how to prove it? Something to start from?
real-analysis analysis fourier-series
$endgroup$
Let's define
$$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt,$$
where $D_{n}(t)$ is Dirichlet Kernel
$$D_n(t):=frac{1}{2} + sum_{k=1}^{n} cos(kt)= frac{sin left(tleft(n+frac{1}{2}right)right)}{2sin left(frac{t}{2}right)}.$$
I need to prove that $$frac{4}{pi^2} ln(n) leq A leq 3 + ln(n).$$
Any ideas, clues or hints on how to prove it? Something to start from?
real-analysis analysis fourier-series
real-analysis analysis fourier-series
edited Jan 16 at 20:09
AEngineer
1,6521318
1,6521318
asked Jan 16 at 20:02
BreadBread
104
104
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
All you need to know is that $3 < pi < 4$ and $e > 2$.
As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,
and $ln pi < log_2 4 = 2$.
$endgroup$
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
add a comment |
$begingroup$
What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$
Any idea how to get 3 in this?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076221%2fdirichlet-kernel-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
All you need to know is that $3 < pi < 4$ and $e > 2$.
As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,
and $ln pi < log_2 4 = 2$.
$endgroup$
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
add a comment |
$begingroup$
All you need to know is that $3 < pi < 4$ and $e > 2$.
As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,
and $ln pi < log_2 4 = 2$.
$endgroup$
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
add a comment |
$begingroup$
All you need to know is that $3 < pi < 4$ and $e > 2$.
As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,
and $ln pi < log_2 4 = 2$.
$endgroup$
All you need to know is that $3 < pi < 4$ and $e > 2$.
As $n ge 1$ you have $1 + dfrac 1{2n} le dfrac 32$ so that $dfrac 2pi left( 1 + dfrac 1{2n} le dfrac 32 right) le dfrac 3 pi < 1$,
and $ln pi < log_2 4 = 2$.
answered Jan 24 at 20:42
Umberto P.Umberto P.
40.4k13370
40.4k13370
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
add a comment |
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
$begingroup$
Thank you kindly. :D
$endgroup$
– Bread
Jan 25 at 1:04
add a comment |
$begingroup$
What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$
Any idea how to get 3 in this?
$endgroup$
add a comment |
$begingroup$
What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$
Any idea how to get 3 in this?
$endgroup$
add a comment |
$begingroup$
What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$
Any idea how to get 3 in this?
$endgroup$
What I managed to find out is: $$A := frac{1}{pi} int_{-pi}^pi big| D_{n}(t) big| , dt leq frac{2}{pi} int_{0}^{frac{1}{n}} (n+frac{1}{2}) dt + frac{2}{pi} int_{frac{1}{n}}^{pi} frac{pi}{2t}dt.$$
After integration I get: $$frac{2}{pi}(nt+frac{t}{2}) + frac{2}{pi} frac{pi}{2} ln|t| = frac{2}{pi}(1+frac{1}{2n}) + ln pi + ln n.$$
Any idea how to get 3 in this?
answered Jan 24 at 17:07
BreadBread
104
104
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076221%2fdirichlet-kernel-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown