Show that $(lambda v= vec{0})Rightarrow lambda=0$ or $v=vec{0}$ Vector-space
$begingroup$
If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$
Since $vec{0}x=vec{0},forall xin V$
But what if $vneq vec{0}$
linear-algebra
$endgroup$
add a comment |
$begingroup$
If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$
Since $vec{0}x=vec{0},forall xin V$
But what if $vneq vec{0}$
linear-algebra
$endgroup$
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32
add a comment |
$begingroup$
If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$
Since $vec{0}x=vec{0},forall xin V$
But what if $vneq vec{0}$
linear-algebra
$endgroup$
If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$
Since $vec{0}x=vec{0},forall xin V$
But what if $vneq vec{0}$
linear-algebra
linear-algebra
asked Jan 16 at 20:26
RM777RM777
38312
38312
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32
add a comment |
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$
Let $alpha cdot x=0$
If $alpha = 0$ we are done
So let $alpha neq 0$
Then $alpha^{-1}$ exists and
$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$
$endgroup$
add a comment |
$begingroup$
Suppose that $lambda vec v = vec 0$.
If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.
Otherwise $lambda = 0$.
$endgroup$
add a comment |
$begingroup$
Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.
$endgroup$
add a comment |
$begingroup$
If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076245%2fshow-that-lambda-v-vec0-rightarrow-lambda-0-or-v-vec0-vector-spac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$
Let $alpha cdot x=0$
If $alpha = 0$ we are done
So let $alpha neq 0$
Then $alpha^{-1}$ exists and
$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$
$endgroup$
add a comment |
$begingroup$
To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$
Let $alpha cdot x=0$
If $alpha = 0$ we are done
So let $alpha neq 0$
Then $alpha^{-1}$ exists and
$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$
$endgroup$
add a comment |
$begingroup$
To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$
Let $alpha cdot x=0$
If $alpha = 0$ we are done
So let $alpha neq 0$
Then $alpha^{-1}$ exists and
$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$
$endgroup$
To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$
Let $alpha cdot x=0$
If $alpha = 0$ we are done
So let $alpha neq 0$
Then $alpha^{-1}$ exists and
$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$
edited Jan 16 at 20:46
RM777
38312
38312
answered Jan 16 at 20:43
s0ulr3aper07s0ulr3aper07
683112
683112
add a comment |
add a comment |
$begingroup$
Suppose that $lambda vec v = vec 0$.
If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.
Otherwise $lambda = 0$.
$endgroup$
add a comment |
$begingroup$
Suppose that $lambda vec v = vec 0$.
If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.
Otherwise $lambda = 0$.
$endgroup$
add a comment |
$begingroup$
Suppose that $lambda vec v = vec 0$.
If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.
Otherwise $lambda = 0$.
$endgroup$
Suppose that $lambda vec v = vec 0$.
If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.
Otherwise $lambda = 0$.
answered Jan 16 at 20:34
Umberto P.Umberto P.
40.4k13370
40.4k13370
add a comment |
add a comment |
$begingroup$
Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.
$endgroup$
add a comment |
$begingroup$
Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.
$endgroup$
add a comment |
$begingroup$
Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.
$endgroup$
Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.
answered Jan 16 at 20:34
ArthurArthur
122k7122211
122k7122211
add a comment |
add a comment |
$begingroup$
If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.
$endgroup$
add a comment |
$begingroup$
If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.
$endgroup$
add a comment |
$begingroup$
If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.
$endgroup$
If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.
answered Jan 16 at 20:33
EuxhenHEuxhenH
536212
536212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076245%2fshow-that-lambda-v-vec0-rightarrow-lambda-0-or-v-vec0-vector-spac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30
$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32