Show that $(lambda v= vec{0})Rightarrow lambda=0$ or $v=vec{0}$ Vector-space












-1












$begingroup$


If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$



Since $vec{0}x=vec{0},forall xin V$



But what if $vneq vec{0}$










share|cite|improve this question









$endgroup$












  • $begingroup$
    If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
    $endgroup$
    – pwerth
    Jan 16 at 20:30










  • $begingroup$
    Yes I want to prove that, but I don't know how.
    $endgroup$
    – RM777
    Jan 16 at 20:32
















-1












$begingroup$


If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$



Since $vec{0}x=vec{0},forall xin V$



But what if $vneq vec{0}$










share|cite|improve this question









$endgroup$












  • $begingroup$
    If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
    $endgroup$
    – pwerth
    Jan 16 at 20:30










  • $begingroup$
    Yes I want to prove that, but I don't know how.
    $endgroup$
    – RM777
    Jan 16 at 20:32














-1












-1








-1





$begingroup$


If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$



Since $vec{0}x=vec{0},forall xin V$



But what if $vneq vec{0}$










share|cite|improve this question









$endgroup$




If $lambda neq 0$ then $v= 1v=(lambdalambda^{-1})v=lambda v lambda^{-1}v=vec{0}lambda^{-1}v=vec{0}$



Since $vec{0}x=vec{0},forall xin V$



But what if $vneq vec{0}$







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 16 at 20:26









RM777RM777

38312




38312












  • $begingroup$
    If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
    $endgroup$
    – pwerth
    Jan 16 at 20:30










  • $begingroup$
    Yes I want to prove that, but I don't know how.
    $endgroup$
    – RM777
    Jan 16 at 20:32


















  • $begingroup$
    If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
    $endgroup$
    – pwerth
    Jan 16 at 20:30










  • $begingroup$
    Yes I want to prove that, but I don't know how.
    $endgroup$
    – RM777
    Jan 16 at 20:32
















$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30




$begingroup$
If a scalar multiple of a nonzero vector is the zero vector, the scalar must be $0$
$endgroup$
– pwerth
Jan 16 at 20:30












$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32




$begingroup$
Yes I want to prove that, but I don't know how.
$endgroup$
– RM777
Jan 16 at 20:32










4 Answers
4






active

oldest

votes


















1












$begingroup$

To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$





Let $alpha cdot x=0$



If $alpha = 0$ we are done



So let $alpha neq 0$



Then $alpha^{-1}$ exists and



$x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Suppose that $lambda vec v = vec 0$.



    If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.



    Otherwise $lambda = 0$.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.






        share|cite|improve this answer









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076245%2fshow-that-lambda-v-vec0-rightarrow-lambda-0-or-v-vec0-vector-spac%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$





          Let $alpha cdot x=0$



          If $alpha = 0$ we are done



          So let $alpha neq 0$



          Then $alpha^{-1}$ exists and



          $x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$






          share|cite|improve this answer











          $endgroup$


















            1












            $begingroup$

            To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$





            Let $alpha cdot x=0$



            If $alpha = 0$ we are done



            So let $alpha neq 0$



            Then $alpha^{-1}$ exists and



            $x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$






            share|cite|improve this answer











            $endgroup$
















              1












              1








              1





              $begingroup$

              To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$





              Let $alpha cdot x=0$



              If $alpha = 0$ we are done



              So let $alpha neq 0$



              Then $alpha^{-1}$ exists and



              $x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$






              share|cite|improve this answer











              $endgroup$



              To show: $$alpha cdot x=0 Rightarrow alpha = 0 or x=0$$





              Let $alpha cdot x=0$



              If $alpha = 0$ we are done



              So let $alpha neq 0$



              Then $alpha^{-1}$ exists and



              $x=1cdot x=(alpha^{-1}cdotalpha)cdot x=alpha^{-1}cdot(alphacdot x)=alpha^{-1}cdot 0=0$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 16 at 20:46









              RM777

              38312




              38312










              answered Jan 16 at 20:43









              s0ulr3aper07s0ulr3aper07

              683112




              683112























                  1












                  $begingroup$

                  Suppose that $lambda vec v = vec 0$.



                  If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.



                  Otherwise $lambda = 0$.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Suppose that $lambda vec v = vec 0$.



                    If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.



                    Otherwise $lambda = 0$.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Suppose that $lambda vec v = vec 0$.



                      If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.



                      Otherwise $lambda = 0$.






                      share|cite|improve this answer









                      $endgroup$



                      Suppose that $lambda vec v = vec 0$.



                      If $lambda not= 0$ then $vec v = frac{1}lambda lambda vec 0 = vec 0$.



                      Otherwise $lambda = 0$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 16 at 20:34









                      Umberto P.Umberto P.

                      40.4k13370




                      40.4k13370























                          1












                          $begingroup$

                          Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.






                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.






                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.






                              share|cite|improve this answer









                              $endgroup$



                              Your proof that $lambdaneq0implies vec v=vec 0$ is enough. It shows that $lambda$ and $vec v$ can't be non-zero simultaneously, and that's all we care about.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 16 at 20:34









                              ArthurArthur

                              122k7122211




                              122k7122211























                                  0












                                  $begingroup$

                                  If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      If $v neq vec{0}$ then there exists at least one $v_ineq 0$. We have $lambdacdot v_i=0$, which means $lambda=0$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 16 at 20:33









                                      EuxhenHEuxhenH

                                      536212




                                      536212






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076245%2fshow-that-lambda-v-vec0-rightarrow-lambda-0-or-v-vec0-vector-spac%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Human spaceflight

                                          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                                          張江高科駅