Question on Convergent Series












-2












$begingroup$


This is the last question on my real analysis final exam. I didn't get to spend much time on it. Hopefully I remember the problem correctly.



${a_n}_{ngeq1}$ is a sequence of real numbers such that $sum_{ngeq1}a_n$ converges. Let $b_n$ be the cardinality of the set ${kin N:a_k>frac{1}{2^n}}$. Show that $limsup_{nrightarrowinfty}frac{1}{2^n}b_n=0$.



My thought is since $sum frac{1}{2^n}$ converges and $sum a_n$ converges, their terms need to be "comparable", but I don't know how to capture this.










share|cite|improve this question











$endgroup$

















    -2












    $begingroup$


    This is the last question on my real analysis final exam. I didn't get to spend much time on it. Hopefully I remember the problem correctly.



    ${a_n}_{ngeq1}$ is a sequence of real numbers such that $sum_{ngeq1}a_n$ converges. Let $b_n$ be the cardinality of the set ${kin N:a_k>frac{1}{2^n}}$. Show that $limsup_{nrightarrowinfty}frac{1}{2^n}b_n=0$.



    My thought is since $sum frac{1}{2^n}$ converges and $sum a_n$ converges, their terms need to be "comparable", but I don't know how to capture this.










    share|cite|improve this question











    $endgroup$















      -2












      -2








      -2


      1



      $begingroup$


      This is the last question on my real analysis final exam. I didn't get to spend much time on it. Hopefully I remember the problem correctly.



      ${a_n}_{ngeq1}$ is a sequence of real numbers such that $sum_{ngeq1}a_n$ converges. Let $b_n$ be the cardinality of the set ${kin N:a_k>frac{1}{2^n}}$. Show that $limsup_{nrightarrowinfty}frac{1}{2^n}b_n=0$.



      My thought is since $sum frac{1}{2^n}$ converges and $sum a_n$ converges, their terms need to be "comparable", but I don't know how to capture this.










      share|cite|improve this question











      $endgroup$




      This is the last question on my real analysis final exam. I didn't get to spend much time on it. Hopefully I remember the problem correctly.



      ${a_n}_{ngeq1}$ is a sequence of real numbers such that $sum_{ngeq1}a_n$ converges. Let $b_n$ be the cardinality of the set ${kin N:a_k>frac{1}{2^n}}$. Show that $limsup_{nrightarrowinfty}frac{1}{2^n}b_n=0$.



      My thought is since $sum frac{1}{2^n}$ converges and $sum a_n$ converges, their terms need to be "comparable", but I don't know how to capture this.







      real-analysis sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 19 at 3:58









      Martin Sleziak

      45.1k10123277




      45.1k10123277










      asked Dec 19 '18 at 11:11









      Fluffy SkyeFluffy Skye

      34019




      34019






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Fix some positive sequence $(c_n)$ with limit $0$, and, for every $n$ and $m$, let $$A_m=sumlimits_{k=m}^infty a_kqquad B_n={kmid a_kgeqslant c_n}$$ Then, $$A_mgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}a_kgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}c_n=c_ncdot#B_ncap[m,infty)$$ hence $$c_ncdot#B_nleqslant c_ncdot m+c_ncdot#B_ncap[m,infty)leqslant c_ncdot m+A_m$$ In the limit $ntoinfty$, one gets, for every fixed $m$, $$limsup_{ntoinfty},c_ncdot#B_nleqslantlimsup_{ntoinfty},(c_ncdot m+A_m)=A_m$$ The series $sum a_k$ converges hence $inflimits_mA_m=0$, thus, $$limsup_{ntoinfty},c_ncdot#B_n=0$$ If $c_n=2^{-n}$ for every $n$, then $#B_n=b_n$ hence we are done.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 12:40












          • $begingroup$
            True! Well spotted, thanks.
            $endgroup$
            – Did
            Dec 19 '18 at 12:45










          • $begingroup$
            Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:01












          • $begingroup$
            ?? $b_n=#B_n$ by definition.
            $endgroup$
            – Did
            Dec 19 '18 at 13:03










          • $begingroup$
            Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:10














          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046266%2fquestion-on-convergent-series%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Fix some positive sequence $(c_n)$ with limit $0$, and, for every $n$ and $m$, let $$A_m=sumlimits_{k=m}^infty a_kqquad B_n={kmid a_kgeqslant c_n}$$ Then, $$A_mgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}a_kgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}c_n=c_ncdot#B_ncap[m,infty)$$ hence $$c_ncdot#B_nleqslant c_ncdot m+c_ncdot#B_ncap[m,infty)leqslant c_ncdot m+A_m$$ In the limit $ntoinfty$, one gets, for every fixed $m$, $$limsup_{ntoinfty},c_ncdot#B_nleqslantlimsup_{ntoinfty},(c_ncdot m+A_m)=A_m$$ The series $sum a_k$ converges hence $inflimits_mA_m=0$, thus, $$limsup_{ntoinfty},c_ncdot#B_n=0$$ If $c_n=2^{-n}$ for every $n$, then $#B_n=b_n$ hence we are done.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 12:40












          • $begingroup$
            True! Well spotted, thanks.
            $endgroup$
            – Did
            Dec 19 '18 at 12:45










          • $begingroup$
            Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:01












          • $begingroup$
            ?? $b_n=#B_n$ by definition.
            $endgroup$
            – Did
            Dec 19 '18 at 13:03










          • $begingroup$
            Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:10


















          0












          $begingroup$

          Fix some positive sequence $(c_n)$ with limit $0$, and, for every $n$ and $m$, let $$A_m=sumlimits_{k=m}^infty a_kqquad B_n={kmid a_kgeqslant c_n}$$ Then, $$A_mgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}a_kgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}c_n=c_ncdot#B_ncap[m,infty)$$ hence $$c_ncdot#B_nleqslant c_ncdot m+c_ncdot#B_ncap[m,infty)leqslant c_ncdot m+A_m$$ In the limit $ntoinfty$, one gets, for every fixed $m$, $$limsup_{ntoinfty},c_ncdot#B_nleqslantlimsup_{ntoinfty},(c_ncdot m+A_m)=A_m$$ The series $sum a_k$ converges hence $inflimits_mA_m=0$, thus, $$limsup_{ntoinfty},c_ncdot#B_n=0$$ If $c_n=2^{-n}$ for every $n$, then $#B_n=b_n$ hence we are done.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 12:40












          • $begingroup$
            True! Well spotted, thanks.
            $endgroup$
            – Did
            Dec 19 '18 at 12:45










          • $begingroup$
            Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:01












          • $begingroup$
            ?? $b_n=#B_n$ by definition.
            $endgroup$
            – Did
            Dec 19 '18 at 13:03










          • $begingroup$
            Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:10
















          0












          0








          0





          $begingroup$

          Fix some positive sequence $(c_n)$ with limit $0$, and, for every $n$ and $m$, let $$A_m=sumlimits_{k=m}^infty a_kqquad B_n={kmid a_kgeqslant c_n}$$ Then, $$A_mgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}a_kgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}c_n=c_ncdot#B_ncap[m,infty)$$ hence $$c_ncdot#B_nleqslant c_ncdot m+c_ncdot#B_ncap[m,infty)leqslant c_ncdot m+A_m$$ In the limit $ntoinfty$, one gets, for every fixed $m$, $$limsup_{ntoinfty},c_ncdot#B_nleqslantlimsup_{ntoinfty},(c_ncdot m+A_m)=A_m$$ The series $sum a_k$ converges hence $inflimits_mA_m=0$, thus, $$limsup_{ntoinfty},c_ncdot#B_n=0$$ If $c_n=2^{-n}$ for every $n$, then $#B_n=b_n$ hence we are done.






          share|cite|improve this answer











          $endgroup$



          Fix some positive sequence $(c_n)$ with limit $0$, and, for every $n$ and $m$, let $$A_m=sumlimits_{k=m}^infty a_kqquad B_n={kmid a_kgeqslant c_n}$$ Then, $$A_mgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}a_kgeqslantsum_{k=m}^inftymathbf 1_{kin B_n}c_n=c_ncdot#B_ncap[m,infty)$$ hence $$c_ncdot#B_nleqslant c_ncdot m+c_ncdot#B_ncap[m,infty)leqslant c_ncdot m+A_m$$ In the limit $ntoinfty$, one gets, for every fixed $m$, $$limsup_{ntoinfty},c_ncdot#B_nleqslantlimsup_{ntoinfty},(c_ncdot m+A_m)=A_m$$ The series $sum a_k$ converges hence $inflimits_mA_m=0$, thus, $$limsup_{ntoinfty},c_ncdot#B_n=0$$ If $c_n=2^{-n}$ for every $n$, then $#B_n=b_n$ hence we are done.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 19 '18 at 13:59

























          answered Dec 19 '18 at 12:07









          DidDid

          249k23228467




          249k23228467












          • $begingroup$
            In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 12:40












          • $begingroup$
            True! Well spotted, thanks.
            $endgroup$
            – Did
            Dec 19 '18 at 12:45










          • $begingroup$
            Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:01












          • $begingroup$
            ?? $b_n=#B_n$ by definition.
            $endgroup$
            – Did
            Dec 19 '18 at 13:03










          • $begingroup$
            Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:10




















          • $begingroup$
            In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 12:40












          • $begingroup$
            True! Well spotted, thanks.
            $endgroup$
            – Did
            Dec 19 '18 at 12:45










          • $begingroup$
            Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:01












          • $begingroup$
            ?? $b_n=#B_n$ by definition.
            $endgroup$
            – Did
            Dec 19 '18 at 13:03










          • $begingroup$
            Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
            $endgroup$
            – Fluffy Skye
            Dec 19 '18 at 13:10


















          $begingroup$
          In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 12:40






          $begingroup$
          In the first chain of inequality, should it be $c_ncdot#B_ncap[m,infty)$?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 12:40














          $begingroup$
          True! Well spotted, thanks.
          $endgroup$
          – Did
          Dec 19 '18 at 12:45




          $begingroup$
          True! Well spotted, thanks.
          $endgroup$
          – Did
          Dec 19 '18 at 12:45












          $begingroup$
          Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 13:01






          $begingroup$
          Emmm, I'm still a bit confused about the last part. You first take n to infinity and then take m to infinity? But then why $#B_m = b_n$ ?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 13:01














          $begingroup$
          ?? $b_n=#B_n$ by definition.
          $endgroup$
          – Did
          Dec 19 '18 at 13:03




          $begingroup$
          ?? $b_n=#B_n$ by definition.
          $endgroup$
          – Did
          Dec 19 '18 at 13:03












          $begingroup$
          Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 13:10






          $begingroup$
          Yeah I know that. But the subscript is different? In the end you have c_n * #B_m not #B_n?
          $endgroup$
          – Fluffy Skye
          Dec 19 '18 at 13:10




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046266%2fquestion-on-convergent-series%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅