A question about Poincare duality












6












$begingroup$


Let $k$ be a field. Let $C$ be a small category and assume that for every $igeq 0$ we have a functor $H^i:Crightarrow FinDimVect_k$. Assume that there is a function $dim:Obj(C)rightarrow mathbb{Z}_{geq 0}$ such that for every $cin Obj(C)$ and every $0leq i leq 2 dim(c)$ we have a functorial perfect pairing $H^i(c)times H^{2dim(c)-i}(c)rightarrow H^{2dim(c)}(c)$.



Now assume we have two objects $c_1$ and $c_2$ such that $dim(c_1)=dim(c_2)=n$ and such that for some $igeq 0$ the spaces $H^i(c_1)$ and $H^i(c_2)$ are non-isomorphic. Is it true that there can not simultaneously exist morphisms $f:c_1rightarrow c_2$ and $g:c_2rightarrow c_1$ inducing isomorphisms in $H^{2n}$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
    $endgroup$
    – Najib Idrissi
    Feb 16 at 15:15
















6












$begingroup$


Let $k$ be a field. Let $C$ be a small category and assume that for every $igeq 0$ we have a functor $H^i:Crightarrow FinDimVect_k$. Assume that there is a function $dim:Obj(C)rightarrow mathbb{Z}_{geq 0}$ such that for every $cin Obj(C)$ and every $0leq i leq 2 dim(c)$ we have a functorial perfect pairing $H^i(c)times H^{2dim(c)-i}(c)rightarrow H^{2dim(c)}(c)$.



Now assume we have two objects $c_1$ and $c_2$ such that $dim(c_1)=dim(c_2)=n$ and such that for some $igeq 0$ the spaces $H^i(c_1)$ and $H^i(c_2)$ are non-isomorphic. Is it true that there can not simultaneously exist morphisms $f:c_1rightarrow c_2$ and $g:c_2rightarrow c_1$ inducing isomorphisms in $H^{2n}$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
    $endgroup$
    – Najib Idrissi
    Feb 16 at 15:15














6












6








6


1



$begingroup$


Let $k$ be a field. Let $C$ be a small category and assume that for every $igeq 0$ we have a functor $H^i:Crightarrow FinDimVect_k$. Assume that there is a function $dim:Obj(C)rightarrow mathbb{Z}_{geq 0}$ such that for every $cin Obj(C)$ and every $0leq i leq 2 dim(c)$ we have a functorial perfect pairing $H^i(c)times H^{2dim(c)-i}(c)rightarrow H^{2dim(c)}(c)$.



Now assume we have two objects $c_1$ and $c_2$ such that $dim(c_1)=dim(c_2)=n$ and such that for some $igeq 0$ the spaces $H^i(c_1)$ and $H^i(c_2)$ are non-isomorphic. Is it true that there can not simultaneously exist morphisms $f:c_1rightarrow c_2$ and $g:c_2rightarrow c_1$ inducing isomorphisms in $H^{2n}$?










share|cite|improve this question











$endgroup$




Let $k$ be a field. Let $C$ be a small category and assume that for every $igeq 0$ we have a functor $H^i:Crightarrow FinDimVect_k$. Assume that there is a function $dim:Obj(C)rightarrow mathbb{Z}_{geq 0}$ such that for every $cin Obj(C)$ and every $0leq i leq 2 dim(c)$ we have a functorial perfect pairing $H^i(c)times H^{2dim(c)-i}(c)rightarrow H^{2dim(c)}(c)$.



Now assume we have two objects $c_1$ and $c_2$ such that $dim(c_1)=dim(c_2)=n$ and such that for some $igeq 0$ the spaces $H^i(c_1)$ and $H^i(c_2)$ are non-isomorphic. Is it true that there can not simultaneously exist morphisms $f:c_1rightarrow c_2$ and $g:c_2rightarrow c_1$ inducing isomorphisms in $H^{2n}$?







at.algebraic-topology ct.category-theory cohomology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 16 at 0:04









YCor

29.1k487141




29.1k487141










asked Feb 15 at 19:17









paulpaul

1604




1604












  • $begingroup$
    Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
    $endgroup$
    – Najib Idrissi
    Feb 16 at 15:15


















  • $begingroup$
    Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
    $endgroup$
    – Najib Idrissi
    Feb 16 at 15:15
















$begingroup$
Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
$endgroup$
– Najib Idrissi
Feb 16 at 15:15




$begingroup$
Do you assume that $H^i(c) = 0$ for $i ge dim c$? Otherwise there are obvious counterexamples.
$endgroup$
– Najib Idrissi
Feb 16 at 15:15










1 Answer
1






active

oldest

votes


















8












$begingroup$

It is true. For ordinary cohomology this is a standard result about degree one maps; I think it is discussed at the beginning of Browder's book "Surgery on simply-connected manifolds". Let me treat each $H^i$ as a contravariant functor, and write $cup$ for the functorial perfect pairing. Suppose that $f : c_1 to c_2$ is such that $H^{2n}(f)$ is an isomorphism. Then $H^i(f) : H^i(c_2) to H^i(c_1)$ is injective, since if $H^i(f)(x) = 0$ then $H^{2n}(f)(x cup y) = H^i(f)(x) cup H^{2n-i}(f)(y) = 0$ for all $y in H^{2n-i}(c_2)$, which implies $x cup y = 0$, since $H^{2n}(f)$ is an isomorphism. This implies $x = 0$, since $y in H^{2n-i}(c_2)$ was arbitrary and $cup$ is perfect. Hence $dim H^i(c_2) le dim H^i(c_1)$. The same argument for $g$ implies the opposite inequality, so $H^i(c_1)$ and $H^i(c_2)$ are $k$-vector spaces of the same finite dimension, hence are isomorphic.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f323335%2fa-question-about-poincare-duality%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    It is true. For ordinary cohomology this is a standard result about degree one maps; I think it is discussed at the beginning of Browder's book "Surgery on simply-connected manifolds". Let me treat each $H^i$ as a contravariant functor, and write $cup$ for the functorial perfect pairing. Suppose that $f : c_1 to c_2$ is such that $H^{2n}(f)$ is an isomorphism. Then $H^i(f) : H^i(c_2) to H^i(c_1)$ is injective, since if $H^i(f)(x) = 0$ then $H^{2n}(f)(x cup y) = H^i(f)(x) cup H^{2n-i}(f)(y) = 0$ for all $y in H^{2n-i}(c_2)$, which implies $x cup y = 0$, since $H^{2n}(f)$ is an isomorphism. This implies $x = 0$, since $y in H^{2n-i}(c_2)$ was arbitrary and $cup$ is perfect. Hence $dim H^i(c_2) le dim H^i(c_1)$. The same argument for $g$ implies the opposite inequality, so $H^i(c_1)$ and $H^i(c_2)$ are $k$-vector spaces of the same finite dimension, hence are isomorphic.






    share|cite|improve this answer









    $endgroup$


















      8












      $begingroup$

      It is true. For ordinary cohomology this is a standard result about degree one maps; I think it is discussed at the beginning of Browder's book "Surgery on simply-connected manifolds". Let me treat each $H^i$ as a contravariant functor, and write $cup$ for the functorial perfect pairing. Suppose that $f : c_1 to c_2$ is such that $H^{2n}(f)$ is an isomorphism. Then $H^i(f) : H^i(c_2) to H^i(c_1)$ is injective, since if $H^i(f)(x) = 0$ then $H^{2n}(f)(x cup y) = H^i(f)(x) cup H^{2n-i}(f)(y) = 0$ for all $y in H^{2n-i}(c_2)$, which implies $x cup y = 0$, since $H^{2n}(f)$ is an isomorphism. This implies $x = 0$, since $y in H^{2n-i}(c_2)$ was arbitrary and $cup$ is perfect. Hence $dim H^i(c_2) le dim H^i(c_1)$. The same argument for $g$ implies the opposite inequality, so $H^i(c_1)$ and $H^i(c_2)$ are $k$-vector spaces of the same finite dimension, hence are isomorphic.






      share|cite|improve this answer









      $endgroup$
















        8












        8








        8





        $begingroup$

        It is true. For ordinary cohomology this is a standard result about degree one maps; I think it is discussed at the beginning of Browder's book "Surgery on simply-connected manifolds". Let me treat each $H^i$ as a contravariant functor, and write $cup$ for the functorial perfect pairing. Suppose that $f : c_1 to c_2$ is such that $H^{2n}(f)$ is an isomorphism. Then $H^i(f) : H^i(c_2) to H^i(c_1)$ is injective, since if $H^i(f)(x) = 0$ then $H^{2n}(f)(x cup y) = H^i(f)(x) cup H^{2n-i}(f)(y) = 0$ for all $y in H^{2n-i}(c_2)$, which implies $x cup y = 0$, since $H^{2n}(f)$ is an isomorphism. This implies $x = 0$, since $y in H^{2n-i}(c_2)$ was arbitrary and $cup$ is perfect. Hence $dim H^i(c_2) le dim H^i(c_1)$. The same argument for $g$ implies the opposite inequality, so $H^i(c_1)$ and $H^i(c_2)$ are $k$-vector spaces of the same finite dimension, hence are isomorphic.






        share|cite|improve this answer









        $endgroup$



        It is true. For ordinary cohomology this is a standard result about degree one maps; I think it is discussed at the beginning of Browder's book "Surgery on simply-connected manifolds". Let me treat each $H^i$ as a contravariant functor, and write $cup$ for the functorial perfect pairing. Suppose that $f : c_1 to c_2$ is such that $H^{2n}(f)$ is an isomorphism. Then $H^i(f) : H^i(c_2) to H^i(c_1)$ is injective, since if $H^i(f)(x) = 0$ then $H^{2n}(f)(x cup y) = H^i(f)(x) cup H^{2n-i}(f)(y) = 0$ for all $y in H^{2n-i}(c_2)$, which implies $x cup y = 0$, since $H^{2n}(f)$ is an isomorphism. This implies $x = 0$, since $y in H^{2n-i}(c_2)$ was arbitrary and $cup$ is perfect. Hence $dim H^i(c_2) le dim H^i(c_1)$. The same argument for $g$ implies the opposite inequality, so $H^i(c_1)$ and $H^i(c_2)$ are $k$-vector spaces of the same finite dimension, hence are isomorphic.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 15 at 20:43









        John RognesJohn Rognes

        4,6612527




        4,6612527






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f323335%2fa-question-about-poincare-duality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg