Derivative by definition of $ f(x)= 2xsin(2x)$












1












$begingroup$


I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}



From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
    $endgroup$
    – TonyK
    Jan 18 at 13:37










  • $begingroup$
    Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
    $endgroup$
    – Jakcjones
    Jan 18 at 13:49












  • $begingroup$
    Yes...${}{}{}{}{}$
    $endgroup$
    – TonyK
    Jan 18 at 13:56










  • $begingroup$
    Why is what I did wrong, then? Can you help me understand?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:39










  • $begingroup$
    I mean why can't it be $2(sinxcosh + cosxsinh)?$
    $endgroup$
    – Jakcjones
    Jan 18 at 14:42
















1












$begingroup$


I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}



From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
    $endgroup$
    – TonyK
    Jan 18 at 13:37










  • $begingroup$
    Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
    $endgroup$
    – Jakcjones
    Jan 18 at 13:49












  • $begingroup$
    Yes...${}{}{}{}{}$
    $endgroup$
    – TonyK
    Jan 18 at 13:56










  • $begingroup$
    Why is what I did wrong, then? Can you help me understand?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:39










  • $begingroup$
    I mean why can't it be $2(sinxcosh + cosxsinh)?$
    $endgroup$
    – Jakcjones
    Jan 18 at 14:42














1












1








1





$begingroup$


I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}



From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?










share|cite|improve this question











$endgroup$




I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}



From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?







derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 15:24









Thomas Shelby

4,8082727




4,8082727










asked Jan 18 at 13:25









JakcjonesJakcjones

828




828












  • $begingroup$
    $sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
    $endgroup$
    – TonyK
    Jan 18 at 13:37










  • $begingroup$
    Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
    $endgroup$
    – Jakcjones
    Jan 18 at 13:49












  • $begingroup$
    Yes...${}{}{}{}{}$
    $endgroup$
    – TonyK
    Jan 18 at 13:56










  • $begingroup$
    Why is what I did wrong, then? Can you help me understand?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:39










  • $begingroup$
    I mean why can't it be $2(sinxcosh + cosxsinh)?$
    $endgroup$
    – Jakcjones
    Jan 18 at 14:42


















  • $begingroup$
    $sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
    $endgroup$
    – TonyK
    Jan 18 at 13:37










  • $begingroup$
    Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
    $endgroup$
    – Jakcjones
    Jan 18 at 13:49












  • $begingroup$
    Yes...${}{}{}{}{}$
    $endgroup$
    – TonyK
    Jan 18 at 13:56










  • $begingroup$
    Why is what I did wrong, then? Can you help me understand?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:39










  • $begingroup$
    I mean why can't it be $2(sinxcosh + cosxsinh)?$
    $endgroup$
    – Jakcjones
    Jan 18 at 14:42
















$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37




$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37












$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49






$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49














$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56




$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56












$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39




$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39












$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42




$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42










2 Answers
2






active

oldest

votes


















2












$begingroup$

begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Can you explain how you come from the 3rd equality left side to the 4th?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:16












  • $begingroup$
    $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
    $endgroup$
    – Thomas Shelby
    Jan 18 at 14:25






  • 1




    $begingroup$
    Ok, got it. Wasn't visualizing it. Ty
    $endgroup$
    – Jakcjones
    Jan 18 at 14:27



















3












$begingroup$

I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:



$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$



$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$






share|cite|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078242%2fderivative-by-definition-of-fx-2x-sin2x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    begin{align}
    f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
    &=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
    &=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
    &=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
    &=4xcos2x+2sin2x
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Can you explain how you come from the 3rd equality left side to the 4th?
      $endgroup$
      – Jakcjones
      Jan 18 at 14:16












    • $begingroup$
      $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
      $endgroup$
      – Thomas Shelby
      Jan 18 at 14:25






    • 1




      $begingroup$
      Ok, got it. Wasn't visualizing it. Ty
      $endgroup$
      – Jakcjones
      Jan 18 at 14:27
















    2












    $begingroup$

    begin{align}
    f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
    &=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
    &=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
    &=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
    &=4xcos2x+2sin2x
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Can you explain how you come from the 3rd equality left side to the 4th?
      $endgroup$
      – Jakcjones
      Jan 18 at 14:16












    • $begingroup$
      $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
      $endgroup$
      – Thomas Shelby
      Jan 18 at 14:25






    • 1




      $begingroup$
      Ok, got it. Wasn't visualizing it. Ty
      $endgroup$
      – Jakcjones
      Jan 18 at 14:27














    2












    2








    2





    $begingroup$

    begin{align}
    f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
    &=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
    &=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
    &=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
    &=4xcos2x+2sin2x
    end{align}






    share|cite|improve this answer











    $endgroup$



    begin{align}
    f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
    &=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
    &=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
    &=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
    &=4xcos2x+2sin2x
    end{align}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 18 at 13:58

























    answered Jan 18 at 13:52









    Thomas ShelbyThomas Shelby

    4,8082727




    4,8082727












    • $begingroup$
      Can you explain how you come from the 3rd equality left side to the 4th?
      $endgroup$
      – Jakcjones
      Jan 18 at 14:16












    • $begingroup$
      $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
      $endgroup$
      – Thomas Shelby
      Jan 18 at 14:25






    • 1




      $begingroup$
      Ok, got it. Wasn't visualizing it. Ty
      $endgroup$
      – Jakcjones
      Jan 18 at 14:27


















    • $begingroup$
      Can you explain how you come from the 3rd equality left side to the 4th?
      $endgroup$
      – Jakcjones
      Jan 18 at 14:16












    • $begingroup$
      $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
      $endgroup$
      – Thomas Shelby
      Jan 18 at 14:25






    • 1




      $begingroup$
      Ok, got it. Wasn't visualizing it. Ty
      $endgroup$
      – Jakcjones
      Jan 18 at 14:27
















    $begingroup$
    Can you explain how you come from the 3rd equality left side to the 4th?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:16






    $begingroup$
    Can you explain how you come from the 3rd equality left side to the 4th?
    $endgroup$
    – Jakcjones
    Jan 18 at 14:16














    $begingroup$
    $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
    $endgroup$
    – Thomas Shelby
    Jan 18 at 14:25




    $begingroup$
    $sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
    $endgroup$
    – Thomas Shelby
    Jan 18 at 14:25




    1




    1




    $begingroup$
    Ok, got it. Wasn't visualizing it. Ty
    $endgroup$
    – Jakcjones
    Jan 18 at 14:27




    $begingroup$
    Ok, got it. Wasn't visualizing it. Ty
    $endgroup$
    – Jakcjones
    Jan 18 at 14:27











    3












    $begingroup$

    I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:



    $$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$



    $$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:



      $$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$



      $$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:



        $$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$



        $$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$






        share|cite|improve this answer











        $endgroup$



        I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:



        $$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$



        $$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 18 at 14:08

























        answered Jan 18 at 13:31









        DonAntonioDonAntonio

        180k1495233




        180k1495233






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078242%2fderivative-by-definition-of-fx-2x-sin2x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅