Derivative by definition of $ f(x)= 2xsin(2x)$
$begingroup$
I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}
From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?
derivatives
$endgroup$
|
show 2 more comments
$begingroup$
I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}
From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?
derivatives
$endgroup$
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42
|
show 2 more comments
$begingroup$
I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}
From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?
derivatives
$endgroup$
I want to find the derivative of $f(x)=2xsin(2x)$ but I'm having trouble developing the trigonometric identities. Here's what I worked out:
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2(x+h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{2(x+h)(2sin(x)cos(h)+cos(x)sin(h))-2xsin(2x)}{h}\
&=lim_{hto0}frac{4xsin(x)cos(h)+4hsin(x)cos(h)+4xcos(x)sin(h)+4hcos(x)sin(h)-2xsin(2x)}{h}end{align}
From this point I separate the expressions and apply special limits but I can't get to the finish line. Is this the right track?
derivatives
derivatives
edited Jan 18 at 15:24
Thomas Shelby
4,8082727
4,8082727
asked Jan 18 at 13:25
JakcjonesJakcjones
828
828
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42
|
show 2 more comments
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42
|
show 2 more comments
2 Answers
2
active
oldest
votes
$begingroup$
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}
$endgroup$
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
add a comment |
$begingroup$
I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:
$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$
$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078242%2fderivative-by-definition-of-fx-2x-sin2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}
$endgroup$
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
add a comment |
$begingroup$
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}
$endgroup$
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
add a comment |
$begingroup$
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}
$endgroup$
begin{align}
f'(x)&=lim_{hto0}frac{2(x+h)sin(2x+2h)-2xsin2x}{h}\
&=lim_{hto0}left(frac{2xsin(2x+2h)-2xsin2x}{h}+frac{2hsin(2x+2h)}{h}right)\
&=lim_{hto0}frac{2x(sin(2x+2h)-sin2x)}{h}+lim_{hto0}frac{2hsin(2x+2h)}{h}\
&=lim_{hto0}frac{2x(2sin(h)cos(2x+h))}{h}+lim_{hto0}frac{2sin(2x+2h)}{1}\
&=4xcos2x+2sin2x
end{align}
edited Jan 18 at 13:58
answered Jan 18 at 13:52
Thomas ShelbyThomas Shelby
4,8082727
4,8082727
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
add a comment |
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
Can you explain how you come from the 3rd equality left side to the 4th?
$endgroup$
– Jakcjones
Jan 18 at 14:16
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
$begingroup$
$sin A-sin B=2sinleft(frac {A-B}{2}right)cosleft(frac {A+B}{2}right)$.
$endgroup$
– Thomas Shelby
Jan 18 at 14:25
1
1
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
$begingroup$
Ok, got it. Wasn't visualizing it. Ty
$endgroup$
– Jakcjones
Jan 18 at 14:27
add a comment |
$begingroup$
I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:
$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$
$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$
$endgroup$
add a comment |
$begingroup$
I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:
$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$
$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$
$endgroup$
add a comment |
$begingroup$
I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:
$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$
$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$
$endgroup$
I think you may be on the right track, yet the limit for the derivative definition you're using makes things specially cumbersome. What about the following?:
$$frac{2xsin2 x-2x_0sin2 x_0}{x-x_0}=frac{2xsin 2x-2xsin 2x_0+2xsin2 x_0-2x_0sin x_0}{x-x_0}=$$
$$=2xfrac{sin 2x-sin2 x_0}{x-x_0}+2sin 2x_0frac{x-x_0}{x-x_0}xrightarrow[xto x_0]{}4xcos2 x_0+2sin2 x_0$$
edited Jan 18 at 14:08
answered Jan 18 at 13:31
DonAntonioDonAntonio
180k1495233
180k1495233
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078242%2fderivative-by-definition-of-fx-2x-sin2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$sin(2(x+h))$ is not equal to $2sin x cos h + cos x sin h$. It's not even equal to $2(sin x cos h + cos x sin h)$.
$endgroup$
– TonyK
Jan 18 at 13:37
$begingroup$
Isn't $sin(2a)=2sin(a)cos(a)$? And then $sin(a+b)= sin(a)cos(b)+cos(a)sin(b)$?
$endgroup$
– Jakcjones
Jan 18 at 13:49
$begingroup$
Yes...${}{}{}{}{}$
$endgroup$
– TonyK
Jan 18 at 13:56
$begingroup$
Why is what I did wrong, then? Can you help me understand?
$endgroup$
– Jakcjones
Jan 18 at 14:39
$begingroup$
I mean why can't it be $2(sinxcosh + cosxsinh)?$
$endgroup$
– Jakcjones
Jan 18 at 14:42