Equivalent Convex programs with different solutions












0












$begingroup$


Let $R_kappa in mathbb{R}^{d times d}_{sym}$, $S_kappa in mathbb{R}^{d times d}_{sym}$, $eta_kappa in mathbb{R}^+$, for a set ${ kappa }$. Define a optimization problem $(1)$ as
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{2}(| S_kappa |^2_{Fr} -alpha^2 ) leq 0,quad forall kappa
end{align}

which is convex, and provided there is a feasible interior point has an optimal solution.



If I then have the function
$$ phi(x) = begin{cases} x^2,&x>0\0,& xleq 0 end{cases}$$
and apply this to the second constraint I can get optimization problem $(2)$
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{4}phi(| S_kappa |^2_{Fr} -alpha^2)leq 0,quad forall kappa
end{align}



$phi$ is a convex function, and the feasible sets for both optimizations are the same, thus both $(1)$ and $(2)$ should have the same solution.



The first KKT condition for $(1)$ applied to the Lagrangian gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa
end{align}

and applying the trace decomposition $A = amathcal{I} + tilde{A}$ where $tr(tilde{A}) = 0$ gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa
end{align}



The Lagrangian of $(2)$ is
begin{align}
sum_kappa eta_kappa exp(tr(R_kappa S_kappa) + 2lambda (sum_kappa exp(tr(S_kappa)/2) - C) + sum_kappa frac{mu_kappa}{4}phi(| S_kappa |^2_{Fr} -alpha^2)
end{align}

differentiating w.r.t $S_kappa$ and setting equal to $0$ gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}

applying the trace decomposition gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}



which gives a contradiction: from primal feasibility we are on the $0$ branch, but we also know that $tilde{R}_kappaneq 0$. What have I done wrong here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 20:03






  • 1




    $begingroup$
    You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
    $endgroup$
    – copper.hat
    Jan 15 at 20:33










  • $begingroup$
    So then the second problem has the same primal solution, but does not have a dual solution?
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 21:24










  • $begingroup$
    I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
    $endgroup$
    – copper.hat
    Jan 15 at 21:31
















0












$begingroup$


Let $R_kappa in mathbb{R}^{d times d}_{sym}$, $S_kappa in mathbb{R}^{d times d}_{sym}$, $eta_kappa in mathbb{R}^+$, for a set ${ kappa }$. Define a optimization problem $(1)$ as
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{2}(| S_kappa |^2_{Fr} -alpha^2 ) leq 0,quad forall kappa
end{align}

which is convex, and provided there is a feasible interior point has an optimal solution.



If I then have the function
$$ phi(x) = begin{cases} x^2,&x>0\0,& xleq 0 end{cases}$$
and apply this to the second constraint I can get optimization problem $(2)$
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{4}phi(| S_kappa |^2_{Fr} -alpha^2)leq 0,quad forall kappa
end{align}



$phi$ is a convex function, and the feasible sets for both optimizations are the same, thus both $(1)$ and $(2)$ should have the same solution.



The first KKT condition for $(1)$ applied to the Lagrangian gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa
end{align}

and applying the trace decomposition $A = amathcal{I} + tilde{A}$ where $tr(tilde{A}) = 0$ gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa
end{align}



The Lagrangian of $(2)$ is
begin{align}
sum_kappa eta_kappa exp(tr(R_kappa S_kappa) + 2lambda (sum_kappa exp(tr(S_kappa)/2) - C) + sum_kappa frac{mu_kappa}{4}phi(| S_kappa |^2_{Fr} -alpha^2)
end{align}

differentiating w.r.t $S_kappa$ and setting equal to $0$ gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}

applying the trace decomposition gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}



which gives a contradiction: from primal feasibility we are on the $0$ branch, but we also know that $tilde{R}_kappaneq 0$. What have I done wrong here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 20:03






  • 1




    $begingroup$
    You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
    $endgroup$
    – copper.hat
    Jan 15 at 20:33










  • $begingroup$
    So then the second problem has the same primal solution, but does not have a dual solution?
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 21:24










  • $begingroup$
    I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
    $endgroup$
    – copper.hat
    Jan 15 at 21:31














0












0








0





$begingroup$


Let $R_kappa in mathbb{R}^{d times d}_{sym}$, $S_kappa in mathbb{R}^{d times d}_{sym}$, $eta_kappa in mathbb{R}^+$, for a set ${ kappa }$. Define a optimization problem $(1)$ as
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{2}(| S_kappa |^2_{Fr} -alpha^2 ) leq 0,quad forall kappa
end{align}

which is convex, and provided there is a feasible interior point has an optimal solution.



If I then have the function
$$ phi(x) = begin{cases} x^2,&x>0\0,& xleq 0 end{cases}$$
and apply this to the second constraint I can get optimization problem $(2)$
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{4}phi(| S_kappa |^2_{Fr} -alpha^2)leq 0,quad forall kappa
end{align}



$phi$ is a convex function, and the feasible sets for both optimizations are the same, thus both $(1)$ and $(2)$ should have the same solution.



The first KKT condition for $(1)$ applied to the Lagrangian gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa
end{align}

and applying the trace decomposition $A = amathcal{I} + tilde{A}$ where $tr(tilde{A}) = 0$ gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa
end{align}



The Lagrangian of $(2)$ is
begin{align}
sum_kappa eta_kappa exp(tr(R_kappa S_kappa) + 2lambda (sum_kappa exp(tr(S_kappa)/2) - C) + sum_kappa frac{mu_kappa}{4}phi(| S_kappa |^2_{Fr} -alpha^2)
end{align}

differentiating w.r.t $S_kappa$ and setting equal to $0$ gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}

applying the trace decomposition gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}



which gives a contradiction: from primal feasibility we are on the $0$ branch, but we also know that $tilde{R}_kappaneq 0$. What have I done wrong here?










share|cite|improve this question









$endgroup$




Let $R_kappa in mathbb{R}^{d times d}_{sym}$, $S_kappa in mathbb{R}^{d times d}_{sym}$, $eta_kappa in mathbb{R}^+$, for a set ${ kappa }$. Define a optimization problem $(1)$ as
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{2}(| S_kappa |^2_{Fr} -alpha^2 ) leq 0,quad forall kappa
end{align}

which is convex, and provided there is a feasible interior point has an optimal solution.



If I then have the function
$$ phi(x) = begin{cases} x^2,&x>0\0,& xleq 0 end{cases}$$
and apply this to the second constraint I can get optimization problem $(2)$
begin{align}
&min_{{S_kappa}} sum_kappa eta_kappa exp( tr(R_kappa S_kappa) )\
text{s.t.}quad& 2 (sum_kappa exp(tr(S_kappa)/2) - C) leq 0\
&frac{1}{4}phi(| S_kappa |^2_{Fr} -alpha^2)leq 0,quad forall kappa
end{align}



$phi$ is a convex function, and the feasible sets for both optimizations are the same, thus both $(1)$ and $(2)$ should have the same solution.



The first KKT condition for $(1)$ applied to the Lagrangian gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa
end{align}

and applying the trace decomposition $A = amathcal{I} + tilde{A}$ where $tr(tilde{A}) = 0$ gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa
end{align}



The Lagrangian of $(2)$ is
begin{align}
sum_kappa eta_kappa exp(tr(R_kappa S_kappa) + 2lambda (sum_kappa exp(tr(S_kappa)/2) - C) + sum_kappa frac{mu_kappa}{4}phi(| S_kappa |^2_{Fr} -alpha^2)
end{align}

differentiating w.r.t $S_kappa$ and setting equal to $0$ gives
begin{align}
0 &= eta_kappa R_kappa exp(tr(R_kappa S_kappa) ) + lambda mathcal{I} + mu_kappa S_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}

applying the trace decomposition gives
begin{align}
0 &= eta_kappa tilde{R}_kappa exp(tr(R_kappa S_kappa) ) + mu_kappa tilde{S}_kappa begin{cases} (| S_kappa |^2_{Fr} -alpha^2), & | S_kappa |^2_{Fr} -alpha^2 > 0\
0, & | S_kappa |^2_{Fr} -alpha^2 leq 0
end{cases}
end{align}



which gives a contradiction: from primal feasibility we are on the $0$ branch, but we also know that $tilde{R}_kappaneq 0$. What have I done wrong here?







optimization convex-optimization nonlinear-optimization karush-kuhn-tucker






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 19:44









NeedsToKnowMoreMathsNeedsToKnowMoreMaths

728




728












  • $begingroup$
    Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 20:03






  • 1




    $begingroup$
    You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
    $endgroup$
    – copper.hat
    Jan 15 at 20:33










  • $begingroup$
    So then the second problem has the same primal solution, but does not have a dual solution?
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 21:24










  • $begingroup$
    I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
    $endgroup$
    – copper.hat
    Jan 15 at 21:31


















  • $begingroup$
    Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 20:03






  • 1




    $begingroup$
    You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
    $endgroup$
    – copper.hat
    Jan 15 at 20:33










  • $begingroup$
    So then the second problem has the same primal solution, but does not have a dual solution?
    $endgroup$
    – NeedsToKnowMoreMaths
    Jan 15 at 21:24










  • $begingroup$
    I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
    $endgroup$
    – copper.hat
    Jan 15 at 21:31
















$begingroup$
Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
$endgroup$
– NeedsToKnowMoreMaths
Jan 15 at 20:03




$begingroup$
Taking the derivative of the trace gives the identity, $frac{d tr(S_kappa)}{d S_kappa} = mathcal{I}$, and taking the derivative of the exponential of trace comes from the chain rule.
$endgroup$
– NeedsToKnowMoreMaths
Jan 15 at 20:03




1




1




$begingroup$
You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
$endgroup$
– copper.hat
Jan 15 at 20:33




$begingroup$
You need some regularity conditions to apply KKT. For example, the second version of the second constraint can never be strictly feasible.
$endgroup$
– copper.hat
Jan 15 at 20:33












$begingroup$
So then the second problem has the same primal solution, but does not have a dual solution?
$endgroup$
– NeedsToKnowMoreMaths
Jan 15 at 21:24




$begingroup$
So then the second problem has the same primal solution, but does not have a dual solution?
$endgroup$
– NeedsToKnowMoreMaths
Jan 15 at 21:24












$begingroup$
I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
$endgroup$
– copper.hat
Jan 15 at 21:31




$begingroup$
I would have to think about that. The first problem has no duality gap because of Slater. I would need to do a little work to check if strong duality holds for the second problem.
$endgroup$
– copper.hat
Jan 15 at 21:31










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074868%2fequivalent-convex-programs-with-different-solutions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074868%2fequivalent-convex-programs-with-different-solutions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅