convexity of the function f(x,y)=$int_{0}^{x^2+y^4} e^{t^2} dt $












0












$begingroup$


To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
    $endgroup$
    – copper.hat
    Jan 15 at 20:50












  • $begingroup$
    @copper.hat Unfortunately the composition of convex functions can be nonconvex...
    $endgroup$
    – JRen
    Jan 15 at 21:01








  • 1




    $begingroup$
    @JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
    $endgroup$
    – copper.hat
    Jan 15 at 21:03










  • $begingroup$
    @JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
    $endgroup$
    – copper.hat
    Jan 15 at 21:07












  • $begingroup$
    @copper.hat: Oh you'r right.
    $endgroup$
    – JRen
    Jan 15 at 21:07
















0












$begingroup$


To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
    $endgroup$
    – copper.hat
    Jan 15 at 20:50












  • $begingroup$
    @copper.hat Unfortunately the composition of convex functions can be nonconvex...
    $endgroup$
    – JRen
    Jan 15 at 21:01








  • 1




    $begingroup$
    @JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
    $endgroup$
    – copper.hat
    Jan 15 at 21:03










  • $begingroup$
    @JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
    $endgroup$
    – copper.hat
    Jan 15 at 21:07












  • $begingroup$
    @copper.hat: Oh you'r right.
    $endgroup$
    – JRen
    Jan 15 at 21:07














0












0








0





$begingroup$


To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.










share|cite|improve this question









$endgroup$




To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 20:39









Giulia B.Giulia B.

512311




512311












  • $begingroup$
    Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
    $endgroup$
    – copper.hat
    Jan 15 at 20:50












  • $begingroup$
    @copper.hat Unfortunately the composition of convex functions can be nonconvex...
    $endgroup$
    – JRen
    Jan 15 at 21:01








  • 1




    $begingroup$
    @JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
    $endgroup$
    – copper.hat
    Jan 15 at 21:03










  • $begingroup$
    @JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
    $endgroup$
    – copper.hat
    Jan 15 at 21:07












  • $begingroup$
    @copper.hat: Oh you'r right.
    $endgroup$
    – JRen
    Jan 15 at 21:07


















  • $begingroup$
    Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
    $endgroup$
    – copper.hat
    Jan 15 at 20:50












  • $begingroup$
    @copper.hat Unfortunately the composition of convex functions can be nonconvex...
    $endgroup$
    – JRen
    Jan 15 at 21:01








  • 1




    $begingroup$
    @JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
    $endgroup$
    – copper.hat
    Jan 15 at 21:03










  • $begingroup$
    @JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
    $endgroup$
    – copper.hat
    Jan 15 at 21:07












  • $begingroup$
    @copper.hat: Oh you'r right.
    $endgroup$
    – JRen
    Jan 15 at 21:07
















$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50






$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50














$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01






$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01






1




1




$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03




$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03












$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07






$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07














$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07




$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074939%2fconvexity-of-the-function-fx-y-int-0x2y4-et2-dt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074939%2fconvexity-of-the-function-fx-y-int-0x2y4-et2-dt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅