convexity of the function f(x,y)=$int_{0}^{x^2+y^4} e^{t^2} dt $
$begingroup$
To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.
real-analysis
$endgroup$
add a comment |
$begingroup$
To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.
real-analysis
$endgroup$
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
1
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07
add a comment |
$begingroup$
To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.
real-analysis
$endgroup$
To study the convexity of this function I calculate the Hessian but is complicate to find is semi-definite positive or negative.
real-analysis
real-analysis
asked Jan 15 at 20:39
Giulia B.Giulia B.
512311
512311
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
1
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07
add a comment |
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
1
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
1
1
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074939%2fconvexity-of-the-function-fx-y-int-0x2y4-et2-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074939%2fconvexity-of-the-function-fx-y-int-0x2y4-et2-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let $g(x) = int_0^x e^{t^2} dt $ for $x ge 0$. It is convex and increasing. The function $(x,y) mapsto x^2+y^4$ is convex. Now compose...
$endgroup$
– copper.hat
Jan 15 at 20:50
$begingroup$
@copper.hat Unfortunately the composition of convex functions can be nonconvex...
$endgroup$
– JRen
Jan 15 at 21:01
1
$begingroup$
@JRen: Fortunately the composition of a non decreasing convex function with a convex function is.
$endgroup$
– copper.hat
Jan 15 at 21:03
$begingroup$
@JRen: A moment's thought will show how to extend $g$ for $x <0$. (This is not the first time I have seen a convex function :-)).
$endgroup$
– copper.hat
Jan 15 at 21:07
$begingroup$
@copper.hat: Oh you'r right.
$endgroup$
– JRen
Jan 15 at 21:07