Union of Jordan chains
$begingroup$
Let $mathcal{V}_i=mathcal{R}(A^i)capmathcal{N}(A)$, where $A$ is a nilpotent matrix of order $k$ in $C^{ntimes n}$ ($mathcal{R}(cdot),mathcal{N}(cdot)$ are the image and null spaces of a matrix, respectively). Define disjoint sets $mathcal{S}_0,mathcal{S}_1,cdots,mathcal{S}_{k-1}$ such that for $i=0,cdots,k-1$, $mathcal{S}_icupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_i$. In particular, $mathcal{S}=mathcal{S}_0cupmathcal{S}_1cupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_0=mathcal{N}(A)$.
Then for $i =1,cdots,k-1$ and any $sinmathcal{S}_i$, if $v$ is such that $A^iv=s$, we call $mathcal{J}_s={A^iv,cdots,Av,v}$ a Jordan chain for $A$.
Enough with definitions: my question is what is, really, $bigcup_{sinmathcal{S}}mathcal{J}_s$? Let ${s_1,s_2,cdots,s_r}$ be a basis for $mathcal{S}$. Are we able to write
$$bigcup_{sinmathcal{S}}mathcal{J}_s={A^rv_1,A^{r-1}v_1,cdots,Av_1,v_1}cup{A^rv_2,cdots,Av_2,v_2}cupcdotscup{A^rv_r,cdots,Av_r,v_r}$$
where $s_i=A^rv_i$ for $i=1,cdots,r$.
It seems like that would be the sensible thing. I'm essentially having a hard time figuring out what the union of the Jordan chains is.
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
Let $mathcal{V}_i=mathcal{R}(A^i)capmathcal{N}(A)$, where $A$ is a nilpotent matrix of order $k$ in $C^{ntimes n}$ ($mathcal{R}(cdot),mathcal{N}(cdot)$ are the image and null spaces of a matrix, respectively). Define disjoint sets $mathcal{S}_0,mathcal{S}_1,cdots,mathcal{S}_{k-1}$ such that for $i=0,cdots,k-1$, $mathcal{S}_icupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_i$. In particular, $mathcal{S}=mathcal{S}_0cupmathcal{S}_1cupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_0=mathcal{N}(A)$.
Then for $i =1,cdots,k-1$ and any $sinmathcal{S}_i$, if $v$ is such that $A^iv=s$, we call $mathcal{J}_s={A^iv,cdots,Av,v}$ a Jordan chain for $A$.
Enough with definitions: my question is what is, really, $bigcup_{sinmathcal{S}}mathcal{J}_s$? Let ${s_1,s_2,cdots,s_r}$ be a basis for $mathcal{S}$. Are we able to write
$$bigcup_{sinmathcal{S}}mathcal{J}_s={A^rv_1,A^{r-1}v_1,cdots,Av_1,v_1}cup{A^rv_2,cdots,Av_2,v_2}cupcdotscup{A^rv_r,cdots,Av_r,v_r}$$
where $s_i=A^rv_i$ for $i=1,cdots,r$.
It seems like that would be the sensible thing. I'm essentially having a hard time figuring out what the union of the Jordan chains is.
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
Let $mathcal{V}_i=mathcal{R}(A^i)capmathcal{N}(A)$, where $A$ is a nilpotent matrix of order $k$ in $C^{ntimes n}$ ($mathcal{R}(cdot),mathcal{N}(cdot)$ are the image and null spaces of a matrix, respectively). Define disjoint sets $mathcal{S}_0,mathcal{S}_1,cdots,mathcal{S}_{k-1}$ such that for $i=0,cdots,k-1$, $mathcal{S}_icupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_i$. In particular, $mathcal{S}=mathcal{S}_0cupmathcal{S}_1cupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_0=mathcal{N}(A)$.
Then for $i =1,cdots,k-1$ and any $sinmathcal{S}_i$, if $v$ is such that $A^iv=s$, we call $mathcal{J}_s={A^iv,cdots,Av,v}$ a Jordan chain for $A$.
Enough with definitions: my question is what is, really, $bigcup_{sinmathcal{S}}mathcal{J}_s$? Let ${s_1,s_2,cdots,s_r}$ be a basis for $mathcal{S}$. Are we able to write
$$bigcup_{sinmathcal{S}}mathcal{J}_s={A^rv_1,A^{r-1}v_1,cdots,Av_1,v_1}cup{A^rv_2,cdots,Av_2,v_2}cupcdotscup{A^rv_r,cdots,Av_r,v_r}$$
where $s_i=A^rv_i$ for $i=1,cdots,r$.
It seems like that would be the sensible thing. I'm essentially having a hard time figuring out what the union of the Jordan chains is.
linear-algebra matrices
$endgroup$
Let $mathcal{V}_i=mathcal{R}(A^i)capmathcal{N}(A)$, where $A$ is a nilpotent matrix of order $k$ in $C^{ntimes n}$ ($mathcal{R}(cdot),mathcal{N}(cdot)$ are the image and null spaces of a matrix, respectively). Define disjoint sets $mathcal{S}_0,mathcal{S}_1,cdots,mathcal{S}_{k-1}$ such that for $i=0,cdots,k-1$, $mathcal{S}_icupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_i$. In particular, $mathcal{S}=mathcal{S}_0cupmathcal{S}_1cupcdotscupmathcal{S}_{k-1}$ is a basis of $mathcal{V}_0=mathcal{N}(A)$.
Then for $i =1,cdots,k-1$ and any $sinmathcal{S}_i$, if $v$ is such that $A^iv=s$, we call $mathcal{J}_s={A^iv,cdots,Av,v}$ a Jordan chain for $A$.
Enough with definitions: my question is what is, really, $bigcup_{sinmathcal{S}}mathcal{J}_s$? Let ${s_1,s_2,cdots,s_r}$ be a basis for $mathcal{S}$. Are we able to write
$$bigcup_{sinmathcal{S}}mathcal{J}_s={A^rv_1,A^{r-1}v_1,cdots,Av_1,v_1}cup{A^rv_2,cdots,Av_2,v_2}cupcdotscup{A^rv_r,cdots,Av_r,v_r}$$
where $s_i=A^rv_i$ for $i=1,cdots,r$.
It seems like that would be the sensible thing. I'm essentially having a hard time figuring out what the union of the Jordan chains is.
linear-algebra matrices
linear-algebra matrices
edited Jan 7 at 11:00
AstlyDichrar
asked Jan 7 at 10:53
AstlyDichrarAstlyDichrar
41738
41738
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064873%2funion-of-jordan-chains%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064873%2funion-of-jordan-chains%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown