Can this Helmholtz PDE with Robin boundary conditions be solved analytically?
$begingroup$
Consider the following Helmholtz problem in the infinite triangle $y>0,;x>y$ with parameters $Q<0$, $Pge0$, $P<|Q|$.
$$left{begin{align}
&psi^{(2,0)}(x,y)+psi^{(0,2)}(x,y)+Epsi(x,y)=0,\
&psi^{(0,1)}(x,0)-frac Q2psi(x,0)=0,\
&psi^{(1,0)}(x,x)-psi^{(0,1)}(x,x)-frac P{sqrt2}psi(x,x)=0\
&|psi(x,y)|<infty.
end{align}right.tag1
$$
I'm mainly interested in the solution with lowest $E$. In the case of $P=0$ it's easy to see that
$$psi_0(x,y)=expleft(frac Q2 (x+y)right)tag2$$
with eigenvalue
$$E=-frac{Q^2}2tag3$$
solves the problem. But what about $P>0$? Can $(1)$ still be solved analytically (i.e. in terms of elementary or special functions)? If not, can the solution be given in the form of an integral or a series with explicitly specified terms?
pde closed-form boundary-value-problem eigenfunctions
$endgroup$
add a comment |
$begingroup$
Consider the following Helmholtz problem in the infinite triangle $y>0,;x>y$ with parameters $Q<0$, $Pge0$, $P<|Q|$.
$$left{begin{align}
&psi^{(2,0)}(x,y)+psi^{(0,2)}(x,y)+Epsi(x,y)=0,\
&psi^{(0,1)}(x,0)-frac Q2psi(x,0)=0,\
&psi^{(1,0)}(x,x)-psi^{(0,1)}(x,x)-frac P{sqrt2}psi(x,x)=0\
&|psi(x,y)|<infty.
end{align}right.tag1
$$
I'm mainly interested in the solution with lowest $E$. In the case of $P=0$ it's easy to see that
$$psi_0(x,y)=expleft(frac Q2 (x+y)right)tag2$$
with eigenvalue
$$E=-frac{Q^2}2tag3$$
solves the problem. But what about $P>0$? Can $(1)$ still be solved analytically (i.e. in terms of elementary or special functions)? If not, can the solution be given in the form of an integral or a series with explicitly specified terms?
pde closed-form boundary-value-problem eigenfunctions
$endgroup$
add a comment |
$begingroup$
Consider the following Helmholtz problem in the infinite triangle $y>0,;x>y$ with parameters $Q<0$, $Pge0$, $P<|Q|$.
$$left{begin{align}
&psi^{(2,0)}(x,y)+psi^{(0,2)}(x,y)+Epsi(x,y)=0,\
&psi^{(0,1)}(x,0)-frac Q2psi(x,0)=0,\
&psi^{(1,0)}(x,x)-psi^{(0,1)}(x,x)-frac P{sqrt2}psi(x,x)=0\
&|psi(x,y)|<infty.
end{align}right.tag1
$$
I'm mainly interested in the solution with lowest $E$. In the case of $P=0$ it's easy to see that
$$psi_0(x,y)=expleft(frac Q2 (x+y)right)tag2$$
with eigenvalue
$$E=-frac{Q^2}2tag3$$
solves the problem. But what about $P>0$? Can $(1)$ still be solved analytically (i.e. in terms of elementary or special functions)? If not, can the solution be given in the form of an integral or a series with explicitly specified terms?
pde closed-form boundary-value-problem eigenfunctions
$endgroup$
Consider the following Helmholtz problem in the infinite triangle $y>0,;x>y$ with parameters $Q<0$, $Pge0$, $P<|Q|$.
$$left{begin{align}
&psi^{(2,0)}(x,y)+psi^{(0,2)}(x,y)+Epsi(x,y)=0,\
&psi^{(0,1)}(x,0)-frac Q2psi(x,0)=0,\
&psi^{(1,0)}(x,x)-psi^{(0,1)}(x,x)-frac P{sqrt2}psi(x,x)=0\
&|psi(x,y)|<infty.
end{align}right.tag1
$$
I'm mainly interested in the solution with lowest $E$. In the case of $P=0$ it's easy to see that
$$psi_0(x,y)=expleft(frac Q2 (x+y)right)tag2$$
with eigenvalue
$$E=-frac{Q^2}2tag3$$
solves the problem. But what about $P>0$? Can $(1)$ still be solved analytically (i.e. in terms of elementary or special functions)? If not, can the solution be given in the form of an integral or a series with explicitly specified terms?
pde closed-form boundary-value-problem eigenfunctions
pde closed-form boundary-value-problem eigenfunctions
asked Jan 7 at 10:18
RuslanRuslan
3,72721533
3,72721533
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064847%2fcan-this-helmholtz-pde-with-robin-boundary-conditions-be-solved-analytically%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064847%2fcan-this-helmholtz-pde-with-robin-boundary-conditions-be-solved-analytically%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown