RSA: Is it possible to recover the plaintext given that we have the ciphertext and the public key?












3












$begingroup$


The $N$ and ciphertext are huge number that is more than 600 digits long.



I'm trying to find the prime factors of $N$ in order to get $p$ and $q$. Using $p$ and $q$ I can get $phi(n)$. And using $phi(n)$ and the public key I would be able to calculate the private key.



So, my question is if it is possible to recover the plaintext given that we have ciphertext and the public key?



If so, is it computationally feasible?










share|improve this question











$endgroup$








  • 8




    $begingroup$
    Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
    $endgroup$
    – Daniel
    Jan 18 at 12:05








  • 3




    $begingroup$
    What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
    $endgroup$
    – Maarten Bodewes
    Jan 18 at 13:06


















3












$begingroup$


The $N$ and ciphertext are huge number that is more than 600 digits long.



I'm trying to find the prime factors of $N$ in order to get $p$ and $q$. Using $p$ and $q$ I can get $phi(n)$. And using $phi(n)$ and the public key I would be able to calculate the private key.



So, my question is if it is possible to recover the plaintext given that we have ciphertext and the public key?



If so, is it computationally feasible?










share|improve this question











$endgroup$








  • 8




    $begingroup$
    Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
    $endgroup$
    – Daniel
    Jan 18 at 12:05








  • 3




    $begingroup$
    What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
    $endgroup$
    – Maarten Bodewes
    Jan 18 at 13:06
















3












3








3


3



$begingroup$


The $N$ and ciphertext are huge number that is more than 600 digits long.



I'm trying to find the prime factors of $N$ in order to get $p$ and $q$. Using $p$ and $q$ I can get $phi(n)$. And using $phi(n)$ and the public key I would be able to calculate the private key.



So, my question is if it is possible to recover the plaintext given that we have ciphertext and the public key?



If so, is it computationally feasible?










share|improve this question











$endgroup$




The $N$ and ciphertext are huge number that is more than 600 digits long.



I'm trying to find the prime factors of $N$ in order to get $p$ and $q$. Using $p$ and $q$ I can get $phi(n)$. And using $phi(n)$ and the public key I would be able to calculate the private key.



So, my question is if it is possible to recover the plaintext given that we have ciphertext and the public key?



If so, is it computationally feasible?







rsa






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 18 at 15:34









Maeher

3,63211830




3,63211830










asked Jan 18 at 12:03









Maqruis1Maqruis1

162




162








  • 8




    $begingroup$
    Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
    $endgroup$
    – Daniel
    Jan 18 at 12:05








  • 3




    $begingroup$
    What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
    $endgroup$
    – Maarten Bodewes
    Jan 18 at 13:06
















  • 8




    $begingroup$
    Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
    $endgroup$
    – Daniel
    Jan 18 at 12:05








  • 3




    $begingroup$
    What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
    $endgroup$
    – Maarten Bodewes
    Jan 18 at 13:06










8




8




$begingroup$
Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
$endgroup$
– Daniel
Jan 18 at 12:05






$begingroup$
Doing so means essentially breaking the scheme, right? The public key is known (hence the term public), and the modulus $N$ is part of the public key. Thus, what you're asking is whether or not we can find the underlying plaintext corresponding to some given ciphertext, which should not be possible according to our belief on the security of RSA.
$endgroup$
– Daniel
Jan 18 at 12:05






3




3




$begingroup$
What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
$endgroup$
– Maarten Bodewes
Jan 18 at 13:06






$begingroup$
What kind of digits are that? Bits? Decimals? If they are decimals - which for us humans is kind of the default - then we're probably talking about a 2048 bit key, and RSA 2048 is certainly unbreakable if the key pair generation and decryption procedures are implemented correctly.... Please clarify the type of digits.
$endgroup$
– Maarten Bodewes
Jan 18 at 13:06












1 Answer
1






active

oldest

votes


















13












$begingroup$

It might be feasible, or not.



If "digits" had been binary digits or bits, the answer would have been yes. Anything about 600-bit can be factored by GNFS. The public record is for a 768-bit RSA modulus, factored in 2009. 600-bit is within reach of CADO-NFS and Msieve. That's even packaged into factoring as a service for semi-deep-pocketed script kiddies.



It could be that $N$ was poorly chosen and can be factored much more easily than by GNFS. Since the generation algorithm is unspecified, we can't tell. Poor RSA key generators have happened (see e.g. SmartFacts, ROCA, and predictable SSH hosts keys on way too many platforms).



It could also be that the encryption system used is plaintext RSA, where the ciphertext is $C=M^ebmod N$ with $M$ the plaintext. This contrasts secure RSA, where $M$ is obtained from plaintext and randomness using a padding scheme such as OAEP. If $M$ is the plaintext (or a known deterministic function of the plaintext), some attacks much easier than factoring the modulus might be possible:




  • if $M$ is in a known small set (names on the class roll, 16-digit credit-card number), it is possible to enumerate possible $M$, perform encryption, and check against the ciphertext.

  • if $M=Ucdot V$ with $U<2^u$, $V<2^v$, $ule v$ (which is likely when $Mll2^{u+v}$ ) then there's a Meet-in-the-Midle attack with cost $O(2^v)$ time and $O(2^u)$ memory.

  • if $M<sqrt[e]N$ we have the $e^text{th}$ root attack (which can be extended to slightly larger $M$).






share|improve this answer











$endgroup$













  • $begingroup$
    Could you post a link for the Meet-in -the-Middle attack?
    $endgroup$
    – kelalaka
    Jan 18 at 13:56






  • 1




    $begingroup$
    @kelalaka: see this, item 3
    $endgroup$
    – fgrieu
    Jan 18 at 14:01











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "281"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f66582%2frsa-is-it-possible-to-recover-the-plaintext-given-that-we-have-the-ciphertext-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

It might be feasible, or not.



If "digits" had been binary digits or bits, the answer would have been yes. Anything about 600-bit can be factored by GNFS. The public record is for a 768-bit RSA modulus, factored in 2009. 600-bit is within reach of CADO-NFS and Msieve. That's even packaged into factoring as a service for semi-deep-pocketed script kiddies.



It could be that $N$ was poorly chosen and can be factored much more easily than by GNFS. Since the generation algorithm is unspecified, we can't tell. Poor RSA key generators have happened (see e.g. SmartFacts, ROCA, and predictable SSH hosts keys on way too many platforms).



It could also be that the encryption system used is plaintext RSA, where the ciphertext is $C=M^ebmod N$ with $M$ the plaintext. This contrasts secure RSA, where $M$ is obtained from plaintext and randomness using a padding scheme such as OAEP. If $M$ is the plaintext (or a known deterministic function of the plaintext), some attacks much easier than factoring the modulus might be possible:




  • if $M$ is in a known small set (names on the class roll, 16-digit credit-card number), it is possible to enumerate possible $M$, perform encryption, and check against the ciphertext.

  • if $M=Ucdot V$ with $U<2^u$, $V<2^v$, $ule v$ (which is likely when $Mll2^{u+v}$ ) then there's a Meet-in-the-Midle attack with cost $O(2^v)$ time and $O(2^u)$ memory.

  • if $M<sqrt[e]N$ we have the $e^text{th}$ root attack (which can be extended to slightly larger $M$).






share|improve this answer











$endgroup$













  • $begingroup$
    Could you post a link for the Meet-in -the-Middle attack?
    $endgroup$
    – kelalaka
    Jan 18 at 13:56






  • 1




    $begingroup$
    @kelalaka: see this, item 3
    $endgroup$
    – fgrieu
    Jan 18 at 14:01
















13












$begingroup$

It might be feasible, or not.



If "digits" had been binary digits or bits, the answer would have been yes. Anything about 600-bit can be factored by GNFS. The public record is for a 768-bit RSA modulus, factored in 2009. 600-bit is within reach of CADO-NFS and Msieve. That's even packaged into factoring as a service for semi-deep-pocketed script kiddies.



It could be that $N$ was poorly chosen and can be factored much more easily than by GNFS. Since the generation algorithm is unspecified, we can't tell. Poor RSA key generators have happened (see e.g. SmartFacts, ROCA, and predictable SSH hosts keys on way too many platforms).



It could also be that the encryption system used is plaintext RSA, where the ciphertext is $C=M^ebmod N$ with $M$ the plaintext. This contrasts secure RSA, where $M$ is obtained from plaintext and randomness using a padding scheme such as OAEP. If $M$ is the plaintext (or a known deterministic function of the plaintext), some attacks much easier than factoring the modulus might be possible:




  • if $M$ is in a known small set (names on the class roll, 16-digit credit-card number), it is possible to enumerate possible $M$, perform encryption, and check against the ciphertext.

  • if $M=Ucdot V$ with $U<2^u$, $V<2^v$, $ule v$ (which is likely when $Mll2^{u+v}$ ) then there's a Meet-in-the-Midle attack with cost $O(2^v)$ time and $O(2^u)$ memory.

  • if $M<sqrt[e]N$ we have the $e^text{th}$ root attack (which can be extended to slightly larger $M$).






share|improve this answer











$endgroup$













  • $begingroup$
    Could you post a link for the Meet-in -the-Middle attack?
    $endgroup$
    – kelalaka
    Jan 18 at 13:56






  • 1




    $begingroup$
    @kelalaka: see this, item 3
    $endgroup$
    – fgrieu
    Jan 18 at 14:01














13












13








13





$begingroup$

It might be feasible, or not.



If "digits" had been binary digits or bits, the answer would have been yes. Anything about 600-bit can be factored by GNFS. The public record is for a 768-bit RSA modulus, factored in 2009. 600-bit is within reach of CADO-NFS and Msieve. That's even packaged into factoring as a service for semi-deep-pocketed script kiddies.



It could be that $N$ was poorly chosen and can be factored much more easily than by GNFS. Since the generation algorithm is unspecified, we can't tell. Poor RSA key generators have happened (see e.g. SmartFacts, ROCA, and predictable SSH hosts keys on way too many platforms).



It could also be that the encryption system used is plaintext RSA, where the ciphertext is $C=M^ebmod N$ with $M$ the plaintext. This contrasts secure RSA, where $M$ is obtained from plaintext and randomness using a padding scheme such as OAEP. If $M$ is the plaintext (or a known deterministic function of the plaintext), some attacks much easier than factoring the modulus might be possible:




  • if $M$ is in a known small set (names on the class roll, 16-digit credit-card number), it is possible to enumerate possible $M$, perform encryption, and check against the ciphertext.

  • if $M=Ucdot V$ with $U<2^u$, $V<2^v$, $ule v$ (which is likely when $Mll2^{u+v}$ ) then there's a Meet-in-the-Midle attack with cost $O(2^v)$ time and $O(2^u)$ memory.

  • if $M<sqrt[e]N$ we have the $e^text{th}$ root attack (which can be extended to slightly larger $M$).






share|improve this answer











$endgroup$



It might be feasible, or not.



If "digits" had been binary digits or bits, the answer would have been yes. Anything about 600-bit can be factored by GNFS. The public record is for a 768-bit RSA modulus, factored in 2009. 600-bit is within reach of CADO-NFS and Msieve. That's even packaged into factoring as a service for semi-deep-pocketed script kiddies.



It could be that $N$ was poorly chosen and can be factored much more easily than by GNFS. Since the generation algorithm is unspecified, we can't tell. Poor RSA key generators have happened (see e.g. SmartFacts, ROCA, and predictable SSH hosts keys on way too many platforms).



It could also be that the encryption system used is plaintext RSA, where the ciphertext is $C=M^ebmod N$ with $M$ the plaintext. This contrasts secure RSA, where $M$ is obtained from plaintext and randomness using a padding scheme such as OAEP. If $M$ is the plaintext (or a known deterministic function of the plaintext), some attacks much easier than factoring the modulus might be possible:




  • if $M$ is in a known small set (names on the class roll, 16-digit credit-card number), it is possible to enumerate possible $M$, perform encryption, and check against the ciphertext.

  • if $M=Ucdot V$ with $U<2^u$, $V<2^v$, $ule v$ (which is likely when $Mll2^{u+v}$ ) then there's a Meet-in-the-Midle attack with cost $O(2^v)$ time and $O(2^u)$ memory.

  • if $M<sqrt[e]N$ we have the $e^text{th}$ root attack (which can be extended to slightly larger $M$).







share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 19 at 12:10

























answered Jan 18 at 13:01









fgrieufgrieu

79.7k7170337




79.7k7170337












  • $begingroup$
    Could you post a link for the Meet-in -the-Middle attack?
    $endgroup$
    – kelalaka
    Jan 18 at 13:56






  • 1




    $begingroup$
    @kelalaka: see this, item 3
    $endgroup$
    – fgrieu
    Jan 18 at 14:01


















  • $begingroup$
    Could you post a link for the Meet-in -the-Middle attack?
    $endgroup$
    – kelalaka
    Jan 18 at 13:56






  • 1




    $begingroup$
    @kelalaka: see this, item 3
    $endgroup$
    – fgrieu
    Jan 18 at 14:01
















$begingroup$
Could you post a link for the Meet-in -the-Middle attack?
$endgroup$
– kelalaka
Jan 18 at 13:56




$begingroup$
Could you post a link for the Meet-in -the-Middle attack?
$endgroup$
– kelalaka
Jan 18 at 13:56




1




1




$begingroup$
@kelalaka: see this, item 3
$endgroup$
– fgrieu
Jan 18 at 14:01




$begingroup$
@kelalaka: see this, item 3
$endgroup$
– fgrieu
Jan 18 at 14:01


















draft saved

draft discarded




















































Thanks for contributing an answer to Cryptography Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f66582%2frsa-is-it-possible-to-recover-the-plaintext-given-that-we-have-the-ciphertext-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅