Trace of product of gradient
$begingroup$
Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.
analysis vector-analysis trace
$endgroup$
add a comment |
$begingroup$
Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.
analysis vector-analysis trace
$endgroup$
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47
add a comment |
$begingroup$
Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.
analysis vector-analysis trace
$endgroup$
Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.
analysis vector-analysis trace
analysis vector-analysis trace
asked Jan 2 at 14:07
lojdmojlojdmoj
877
877
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47
add a comment |
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:
$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$
Hence,
$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$
And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$
Therefore, from (1) and (2):
$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$
Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$
$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$
From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.
Sorry for the computational "proof". I hope I find a more geometric one in the future.
$endgroup$
add a comment |
$begingroup$
A simple counterexample in $mathbb R^n$.
Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So
$$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059513%2ftrace-of-product-of-gradient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:
$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$
Hence,
$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$
And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$
Therefore, from (1) and (2):
$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$
Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$
$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$
From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.
Sorry for the computational "proof". I hope I find a more geometric one in the future.
$endgroup$
add a comment |
$begingroup$
By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:
$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$
Hence,
$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$
And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$
Therefore, from (1) and (2):
$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$
Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$
$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$
From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.
Sorry for the computational "proof". I hope I find a more geometric one in the future.
$endgroup$
add a comment |
$begingroup$
By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:
$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$
Hence,
$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$
And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$
Therefore, from (1) and (2):
$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$
Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$
$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$
From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.
Sorry for the computational "proof". I hope I find a more geometric one in the future.
$endgroup$
By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:
$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$
Hence,
$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$
And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$
Therefore, from (1) and (2):
$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$
Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$
$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$
From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.
Sorry for the computational "proof". I hope I find a more geometric one in the future.
answered Jan 2 at 14:50
pedrothpedroth
765
765
add a comment |
add a comment |
$begingroup$
A simple counterexample in $mathbb R^n$.
Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So
$$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$
$endgroup$
add a comment |
$begingroup$
A simple counterexample in $mathbb R^n$.
Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So
$$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$
$endgroup$
add a comment |
$begingroup$
A simple counterexample in $mathbb R^n$.
Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So
$$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$
$endgroup$
A simple counterexample in $mathbb R^n$.
Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So
$$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$
edited Jan 2 at 15:08
answered Jan 2 at 15:02
mathcounterexamples.netmathcounterexamples.net
26.1k21955
26.1k21955
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059513%2ftrace-of-product-of-gradient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33
$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47