Trace of product of gradient












2












$begingroup$


Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.










share|cite|improve this question









$endgroup$












  • $begingroup$
    @mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
    $endgroup$
    – lojdmoj
    Jan 2 at 14:33










  • $begingroup$
    @mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
    $endgroup$
    – lojdmoj
    Jan 2 at 14:47
















2












$begingroup$


Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.










share|cite|improve this question









$endgroup$












  • $begingroup$
    @mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
    $endgroup$
    – lojdmoj
    Jan 2 at 14:33










  • $begingroup$
    @mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
    $endgroup$
    – lojdmoj
    Jan 2 at 14:47














2












2








2





$begingroup$


Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.










share|cite|improve this question









$endgroup$




Consider vector field $v$. We know, that $Tr(nabla v)=div ~ v$. Is is true that $$Tr(nabla vnabla v)=(div ~ v)^2$$
Thanks for any hint.







analysis vector-analysis trace






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 14:07









lojdmojlojdmoj

877




877












  • $begingroup$
    @mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
    $endgroup$
    – lojdmoj
    Jan 2 at 14:33










  • $begingroup$
    @mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
    $endgroup$
    – lojdmoj
    Jan 2 at 14:47


















  • $begingroup$
    @mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
    $endgroup$
    – lojdmoj
    Jan 2 at 14:33










  • $begingroup$
    @mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
    $endgroup$
    – lojdmoj
    Jan 2 at 14:47
















$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33




$begingroup$
@mathcounterexamples.net $nabla v$ is matrix, so $nabla v nabla v$ is product of two matricies
$endgroup$
– lojdmoj
Jan 2 at 14:33












$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47




$begingroup$
@mathcounterexamples.net $url {math.stackexchange.com/questions/156880/…}$
$endgroup$
– lojdmoj
Jan 2 at 14:47










2 Answers
2






active

oldest

votes


















0












$begingroup$

By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:



$$nabla v nabla v = begin{bmatrix}
nabla v_1^T\
dots\
nabla v_n^T
end{bmatrix} begin{bmatrix}
partial_{x_1}v & dots & partial_{x_n}v
end{bmatrix}
= begin{bmatrix}
left< nabla v_1, partial_{x_1}vright>& dots & dots\
dots & dots & dots \
dots & dots & left< nabla v_n, partial_{x_n}vright>
end{bmatrix}$$



Hence,



$$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$



And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$



Therefore, from (1) and (2):



$$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$



Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$



$$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$



From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.



Sorry for the computational "proof". I hope I find a more geometric one in the future.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    A simple counterexample in $mathbb R^n$.



    Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So



    $$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059513%2ftrace-of-product-of-gradient%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:



      $$nabla v nabla v = begin{bmatrix}
      nabla v_1^T\
      dots\
      nabla v_n^T
      end{bmatrix} begin{bmatrix}
      partial_{x_1}v & dots & partial_{x_n}v
      end{bmatrix}
      = begin{bmatrix}
      left< nabla v_1, partial_{x_1}vright>& dots & dots\
      dots & dots & dots \
      dots & dots & left< nabla v_n, partial_{x_n}vright>
      end{bmatrix}$$



      Hence,



      $$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$



      And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$



      Therefore, from (1) and (2):



      $$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$



      Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$



      $$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$



      From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.



      Sorry for the computational "proof". I hope I find a more geometric one in the future.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:



        $$nabla v nabla v = begin{bmatrix}
        nabla v_1^T\
        dots\
        nabla v_n^T
        end{bmatrix} begin{bmatrix}
        partial_{x_1}v & dots & partial_{x_n}v
        end{bmatrix}
        = begin{bmatrix}
        left< nabla v_1, partial_{x_1}vright>& dots & dots\
        dots & dots & dots \
        dots & dots & left< nabla v_n, partial_{x_n}vright>
        end{bmatrix}$$



        Hence,



        $$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$



        And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$



        Therefore, from (1) and (2):



        $$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$



        Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$



        $$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$



        From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.



        Sorry for the computational "proof". I hope I find a more geometric one in the future.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:



          $$nabla v nabla v = begin{bmatrix}
          nabla v_1^T\
          dots\
          nabla v_n^T
          end{bmatrix} begin{bmatrix}
          partial_{x_1}v & dots & partial_{x_n}v
          end{bmatrix}
          = begin{bmatrix}
          left< nabla v_1, partial_{x_1}vright>& dots & dots\
          dots & dots & dots \
          dots & dots & left< nabla v_n, partial_{x_n}vright>
          end{bmatrix}$$



          Hence,



          $$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$



          And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$



          Therefore, from (1) and (2):



          $$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$



          Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$



          $$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$



          From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.



          Sorry for the computational "proof". I hope I find a more geometric one in the future.






          share|cite|improve this answer









          $endgroup$



          By considering $nabla v$ to be the Jacobian of the vector field $v$. One can show that:



          $$nabla v nabla v = begin{bmatrix}
          nabla v_1^T\
          dots\
          nabla v_n^T
          end{bmatrix} begin{bmatrix}
          partial_{x_1}v & dots & partial_{x_n}v
          end{bmatrix}
          = begin{bmatrix}
          left< nabla v_1, partial_{x_1}vright>& dots & dots\
          dots & dots & dots \
          dots & dots & left< nabla v_n, partial_{x_n}vright>
          end{bmatrix}$$



          Hence,



          $$Tr(nabla v nabla v) = sum_{i=1}^{n} left< nabla v_i, partial_{x_i} vright > ;;(1)$$



          And $$left< nabla v_i, partial_{x_i} vright > = sum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i};;(2)$$



          Therefore, from (1) and (2):



          $$Tr(nabla v nabla v) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_k} frac{partial v_k}{partial x_i} ;;(3)$$



          Now $$text{div}(v) = sum_{i=1}^n frac{partial v_i}{partial x_i}$$



          $$left ( text{div}(v) right )^2 = left (sum_{i=1}^n frac{partial v_i}{partial x_i} right )left (sum_{k=1}^n frac{partial v_k}{partial x_k} right ) = sum_{i=1}^nsum_{k=1}^n frac{partial v_i}{partial x_i} frac{partial v_k}{partial x_k};;(4)$$



          From (3) and (4) we deduce that $Tr(nabla v nabla v) neq left ( text{div}(v) right )^2$.



          Sorry for the computational "proof". I hope I find a more geometric one in the future.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 2 at 14:50









          pedrothpedroth

          765




          765























              1












              $begingroup$

              A simple counterexample in $mathbb R^n$.



              Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So



              $$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                A simple counterexample in $mathbb R^n$.



                Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So



                $$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  A simple counterexample in $mathbb R^n$.



                  Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So



                  $$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$






                  share|cite|improve this answer











                  $endgroup$



                  A simple counterexample in $mathbb R^n$.



                  Take the identity vector field $J: x mapsto x$. Then the Jacobian $nabla J$ is the identity matrix $I_n$. So



                  $$Tr(nabla J cdot nabla J)= Tr(I_n)= n neq n^2= (div I)^2$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 2 at 15:08

























                  answered Jan 2 at 15:02









                  mathcounterexamples.netmathcounterexamples.net

                  26.1k21955




                  26.1k21955






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059513%2ftrace-of-product-of-gradient%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅