geodesic metric in an ellipse
$begingroup$
Consider the ellipse given by $x^2/4 + y^2 = 1$. Fix a point $z_0 = (x_0, y_0)$, where $x_0 > 0$ and $y_0 = sqrt{1 - x_0 ^2/4}$. Given $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$, we put
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right |. $$
I'm trying to see if exists a constant $C> 0$ such that $delta(z,z_0) leq C |z-z_0|$, for all $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$.
My attempt:
$$delta(z,z_0) = left | frac{1}{4} left ( sqrt{4 - x^2},x - sqrt{4 - x_0 ^2}, x_0 right ) + arcsin (x/2) - arcsin(x_0/2) right |$$
and
$$ |z - z_0| = left ( (x-x_0)^2 + frac{1}{4} left ( sqrt{4 - x^2} - sqrt{4 - x_0 ^2}right )^2 right )^{1/2}. $$
Is there any relation between the difference of $arcsin$ that might help?
Or another way to approach this problem?
Thank you.
real-analysis trigonometry geodesic
$endgroup$
add a comment |
$begingroup$
Consider the ellipse given by $x^2/4 + y^2 = 1$. Fix a point $z_0 = (x_0, y_0)$, where $x_0 > 0$ and $y_0 = sqrt{1 - x_0 ^2/4}$. Given $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$, we put
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right |. $$
I'm trying to see if exists a constant $C> 0$ such that $delta(z,z_0) leq C |z-z_0|$, for all $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$.
My attempt:
$$delta(z,z_0) = left | frac{1}{4} left ( sqrt{4 - x^2},x - sqrt{4 - x_0 ^2}, x_0 right ) + arcsin (x/2) - arcsin(x_0/2) right |$$
and
$$ |z - z_0| = left ( (x-x_0)^2 + frac{1}{4} left ( sqrt{4 - x^2} - sqrt{4 - x_0 ^2}right )^2 right )^{1/2}. $$
Is there any relation between the difference of $arcsin$ that might help?
Or another way to approach this problem?
Thank you.
real-analysis trigonometry geodesic
$endgroup$
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08
add a comment |
$begingroup$
Consider the ellipse given by $x^2/4 + y^2 = 1$. Fix a point $z_0 = (x_0, y_0)$, where $x_0 > 0$ and $y_0 = sqrt{1 - x_0 ^2/4}$. Given $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$, we put
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right |. $$
I'm trying to see if exists a constant $C> 0$ such that $delta(z,z_0) leq C |z-z_0|$, for all $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$.
My attempt:
$$delta(z,z_0) = left | frac{1}{4} left ( sqrt{4 - x^2},x - sqrt{4 - x_0 ^2}, x_0 right ) + arcsin (x/2) - arcsin(x_0/2) right |$$
and
$$ |z - z_0| = left ( (x-x_0)^2 + frac{1}{4} left ( sqrt{4 - x^2} - sqrt{4 - x_0 ^2}right )^2 right )^{1/2}. $$
Is there any relation between the difference of $arcsin$ that might help?
Or another way to approach this problem?
Thank you.
real-analysis trigonometry geodesic
$endgroup$
Consider the ellipse given by $x^2/4 + y^2 = 1$. Fix a point $z_0 = (x_0, y_0)$, where $x_0 > 0$ and $y_0 = sqrt{1 - x_0 ^2/4}$. Given $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$, we put
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right |. $$
I'm trying to see if exists a constant $C> 0$ such that $delta(z,z_0) leq C |z-z_0|$, for all $z = (x, sqrt{1 - x ^2/4})$ with $x > 0$.
My attempt:
$$delta(z,z_0) = left | frac{1}{4} left ( sqrt{4 - x^2},x - sqrt{4 - x_0 ^2}, x_0 right ) + arcsin (x/2) - arcsin(x_0/2) right |$$
and
$$ |z - z_0| = left ( (x-x_0)^2 + frac{1}{4} left ( sqrt{4 - x^2} - sqrt{4 - x_0 ^2}right )^2 right )^{1/2}. $$
Is there any relation between the difference of $arcsin$ that might help?
Or another way to approach this problem?
Thank you.
real-analysis trigonometry geodesic
real-analysis trigonometry geodesic
edited Jan 2 at 14:00
A. P
1085
1085
asked Jan 2 at 13:26
user 242964user 242964
720412
720412
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08
add a comment |
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This direction is pretty straight forward im guessing you probably wanted the other direction and misstyped your question
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right | leq left | int_x ^ {x_0} 1 ,dt right |
\ leq |x-x_0|leq |z-z_0|$$
$Rightarrow C=1$ because $ delta(z,z_0)leq 1*|z-z_0|$
For the other direction you only run into problems when either $x=2$ or $x_0=2$. Set $x_0=2$ and then look at $$lim_{xto 2} frac{delta((x,sqrt{1-x^2/4}),(2,0))}{|(x,sqrt{1-x^2/4})-(2,0)|}$$
Using H'lopital you can calculate that limit and if it is 0 your in tough luck. Then there is no $C>0$ so that $ delta(z,z_0)geq C* |z-z_0|forall z,z_0$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059474%2fgeodesic-metric-in-an-ellipse%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This direction is pretty straight forward im guessing you probably wanted the other direction and misstyped your question
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right | leq left | int_x ^ {x_0} 1 ,dt right |
\ leq |x-x_0|leq |z-z_0|$$
$Rightarrow C=1$ because $ delta(z,z_0)leq 1*|z-z_0|$
For the other direction you only run into problems when either $x=2$ or $x_0=2$. Set $x_0=2$ and then look at $$lim_{xto 2} frac{delta((x,sqrt{1-x^2/4}),(2,0))}{|(x,sqrt{1-x^2/4})-(2,0)|}$$
Using H'lopital you can calculate that limit and if it is 0 your in tough luck. Then there is no $C>0$ so that $ delta(z,z_0)geq C* |z-z_0|forall z,z_0$
$endgroup$
add a comment |
$begingroup$
This direction is pretty straight forward im guessing you probably wanted the other direction and misstyped your question
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right | leq left | int_x ^ {x_0} 1 ,dt right |
\ leq |x-x_0|leq |z-z_0|$$
$Rightarrow C=1$ because $ delta(z,z_0)leq 1*|z-z_0|$
For the other direction you only run into problems when either $x=2$ or $x_0=2$. Set $x_0=2$ and then look at $$lim_{xto 2} frac{delta((x,sqrt{1-x^2/4}),(2,0))}{|(x,sqrt{1-x^2/4})-(2,0)|}$$
Using H'lopital you can calculate that limit and if it is 0 your in tough luck. Then there is no $C>0$ so that $ delta(z,z_0)geq C* |z-z_0|forall z,z_0$
$endgroup$
add a comment |
$begingroup$
This direction is pretty straight forward im guessing you probably wanted the other direction and misstyped your question
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right | leq left | int_x ^ {x_0} 1 ,dt right |
\ leq |x-x_0|leq |z-z_0|$$
$Rightarrow C=1$ because $ delta(z,z_0)leq 1*|z-z_0|$
For the other direction you only run into problems when either $x=2$ or $x_0=2$. Set $x_0=2$ and then look at $$lim_{xto 2} frac{delta((x,sqrt{1-x^2/4}),(2,0))}{|(x,sqrt{1-x^2/4})-(2,0)|}$$
Using H'lopital you can calculate that limit and if it is 0 your in tough luck. Then there is no $C>0$ so that $ delta(z,z_0)geq C* |z-z_0|forall z,z_0$
$endgroup$
This direction is pretty straight forward im guessing you probably wanted the other direction and misstyped your question
$$ delta(z,z_0) = left | int_x ^ {x_0} sqrt{1 - t ^2/4} ,dt right | leq left | int_x ^ {x_0} 1 ,dt right |
\ leq |x-x_0|leq |z-z_0|$$
$Rightarrow C=1$ because $ delta(z,z_0)leq 1*|z-z_0|$
For the other direction you only run into problems when either $x=2$ or $x_0=2$. Set $x_0=2$ and then look at $$lim_{xto 2} frac{delta((x,sqrt{1-x^2/4}),(2,0))}{|(x,sqrt{1-x^2/4})-(2,0)|}$$
Using H'lopital you can calculate that limit and if it is 0 your in tough luck. Then there is no $C>0$ so that $ delta(z,z_0)geq C* |z-z_0|forall z,z_0$
answered Jan 2 at 15:27
A. PA. P
1085
1085
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059474%2fgeodesic-metric-in-an-ellipse%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: $sqrt{1-frac {t^2}4}le 1$.
$endgroup$
– random
Jan 2 at 15:08