Prove $ | sum_{k=1}^{n} frac{z_k}{k} |^2 le ( sum_{k=1}^{n} frac{1}{k^2} ) (sum_{k=1}^{n}| z_k|^2 ) $
$begingroup$
I want to prove that:
$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $
where $z_k in mathbb C $
Probably I should use Schwarz inequality:
$$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
after square
$$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$
I thought that I can:
$$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
$$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
and put
$$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
Right side I get instantly. The problem is with left side:
$$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
And I have 2 questions:
1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $
2. Where is the mistake? / How can I finish that?
linear-algebra inequality proof-writing
$endgroup$
add a comment |
$begingroup$
I want to prove that:
$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $
where $z_k in mathbb C $
Probably I should use Schwarz inequality:
$$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
after square
$$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$
I thought that I can:
$$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
$$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
and put
$$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
Right side I get instantly. The problem is with left side:
$$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
And I have 2 questions:
1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $
2. Where is the mistake? / How can I finish that?
linear-algebra inequality proof-writing
$endgroup$
add a comment |
$begingroup$
I want to prove that:
$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $
where $z_k in mathbb C $
Probably I should use Schwarz inequality:
$$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
after square
$$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$
I thought that I can:
$$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
$$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
and put
$$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
Right side I get instantly. The problem is with left side:
$$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
And I have 2 questions:
1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $
2. Where is the mistake? / How can I finish that?
linear-algebra inequality proof-writing
$endgroup$
I want to prove that:
$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $
where $z_k in mathbb C $
Probably I should use Schwarz inequality:
$$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
after square
$$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$
I thought that I can:
$$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
$$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
and put
$$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
Right side I get instantly. The problem is with left side:
$$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
And I have 2 questions:
1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $
2. Where is the mistake? / How can I finish that?
linear-algebra inequality proof-writing
linear-algebra inequality proof-writing
edited Jan 2 at 13:55
Martin R
27.9k33255
27.9k33255
asked Jan 2 at 13:35
VirtualUserVirtualUser
69112
69112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
With your choice of $x$ and $y$ the right-hand side would be
$$
left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
$$
But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
$$
leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
$$
gives the intended result.
$endgroup$
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059485%2fprove-sum-k-1n-fracz-kk-2-le-sum-k-1n-frac1k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With your choice of $x$ and $y$ the right-hand side would be
$$
left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
$$
But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
$$
leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
$$
gives the intended result.
$endgroup$
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
|
show 1 more comment
$begingroup$
With your choice of $x$ and $y$ the right-hand side would be
$$
left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
$$
But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
$$
leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
$$
gives the intended result.
$endgroup$
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
|
show 1 more comment
$begingroup$
With your choice of $x$ and $y$ the right-hand side would be
$$
left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
$$
But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
$$
leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
$$
gives the intended result.
$endgroup$
With your choice of $x$ and $y$ the right-hand side would be
$$
left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
$$
But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
$$
leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
$$
gives the intended result.
edited Jan 2 at 13:52
answered Jan 2 at 13:45
Martin RMartin R
27.9k33255
27.9k33255
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
|
show 1 more comment
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
$endgroup$
– VirtualUser
Jan 2 at 13:47
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
@VirtualUser: I have added the definition of the scalar product.
$endgroup$
– Martin R
Jan 2 at 13:58
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
Ok, but if I understood well, I can choose the scalar product?
$endgroup$
– VirtualUser
Jan 2 at 14:00
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
@VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
$endgroup$
– Martin R
Jan 2 at 14:06
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
$begingroup$
ok, I understand, thanks for your time @Martin_R
$endgroup$
– VirtualUser
Jan 2 at 14:13
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059485%2fprove-sum-k-1n-fracz-kk-2-le-sum-k-1n-frac1k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown