Prove $ | sum_{k=1}^{n} frac{z_k}{k} |^2 le ( sum_{k=1}^{n} frac{1}{k^2} ) (sum_{k=1}^{n}| z_k|^2 ) $












2












$begingroup$


I want to prove that:
$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $

where $z_k in mathbb C $


Probably I should use Schwarz inequality:
$$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
after square
$$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$


I thought that I can:
$$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
$$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
and put
$$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
Right side I get instantly. The problem is with left side:
$$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
And I have 2 questions:

1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $

2. Where is the mistake? / How can I finish that?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I want to prove that:
    $ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $

    where $z_k in mathbb C $


    Probably I should use Schwarz inequality:
    $$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
    after square
    $$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$


    I thought that I can:
    $$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
    $$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
    and put
    $$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
    Right side I get instantly. The problem is with left side:
    $$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
    And I have 2 questions:

    1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $

    2. Where is the mistake? / How can I finish that?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      I want to prove that:
      $ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $

      where $z_k in mathbb C $


      Probably I should use Schwarz inequality:
      $$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
      after square
      $$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$


      I thought that I can:
      $$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
      $$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
      and put
      $$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
      Right side I get instantly. The problem is with left side:
      $$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
      And I have 2 questions:

      1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $

      2. Where is the mistake? / How can I finish that?










      share|cite|improve this question











      $endgroup$




      I want to prove that:
      $ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 le left( sum_{k=1}^{n} frac{1}{k^2} right) cdot left(sum_{k=1}^{n} left| z_kright|^2 right) $

      where $z_k in mathbb C $


      Probably I should use Schwarz inequality:
      $$left| leftlangle x,y rightrangle right| le left| left| x right| right| cdot left| left| y right| right| = sqrt{leftlangle x,x rightrangle cdot leftlangle y,y rightrangle} $$
      after square
      $$ left| leftlangle x,y rightrangle right|^2 le leftlangle x,x rightrangle cdot leftlangle y,y rightrangle $$


      I thought that I can:
      $$ vec{x} = [frac{1}{1^2},frac{1}{2^2},...,frac{1}{n^2}]^T $$
      $$ vec{y} = [left| z_1right|^2,...,left| z_nright|^2]^T $$
      and put
      $$ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $$
      Right side I get instantly. The problem is with left side:
      $$ left| sum_{k=1}^{n} frac{|z_k|^2}{k^2} right|^2 = left| sum_{k=1}^{n} left| frac{z_k^2}{k^2} right| right|^2 = left| sum_{k=1}^{n} frac{z_k^2}{k^2} right|^2 $$ but it is not$$ left| sum_{k=1}^{n} frac{z_k}{k} right|^2 $$
      And I have 2 questions:

      1. Can I define that: $ leftlangle x,yrightrangle = sum_{k=1}^{n} x_k cdot y_k $

      2. Where is the mistake? / How can I finish that?







      linear-algebra inequality proof-writing






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 13:55









      Martin R

      27.9k33255




      27.9k33255










      asked Jan 2 at 13:35









      VirtualUserVirtualUser

      69112




      69112






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          With your choice of $x$ and $y$ the right-hand side would be
          $$
          left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
          $$



          But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
          and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
          $$
          leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
          $$

          gives the intended result.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 13:47










          • $begingroup$
            @VirtualUser: I have added the definition of the scalar product.
            $endgroup$
            – Martin R
            Jan 2 at 13:58










          • $begingroup$
            Ok, but if I understood well, I can choose the scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 14:00










          • $begingroup$
            @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
            $endgroup$
            – Martin R
            Jan 2 at 14:06










          • $begingroup$
            ok, I understand, thanks for your time @Martin_R
            $endgroup$
            – VirtualUser
            Jan 2 at 14:13











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059485%2fprove-sum-k-1n-fracz-kk-2-le-sum-k-1n-frac1k2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          With your choice of $x$ and $y$ the right-hand side would be
          $$
          left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
          $$



          But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
          and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
          $$
          leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
          $$

          gives the intended result.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 13:47










          • $begingroup$
            @VirtualUser: I have added the definition of the scalar product.
            $endgroup$
            – Martin R
            Jan 2 at 13:58










          • $begingroup$
            Ok, but if I understood well, I can choose the scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 14:00










          • $begingroup$
            @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
            $endgroup$
            – Martin R
            Jan 2 at 14:06










          • $begingroup$
            ok, I understand, thanks for your time @Martin_R
            $endgroup$
            – VirtualUser
            Jan 2 at 14:13
















          2












          $begingroup$

          With your choice of $x$ and $y$ the right-hand side would be
          $$
          left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
          $$



          But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
          and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
          $$
          leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
          $$

          gives the intended result.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 13:47










          • $begingroup$
            @VirtualUser: I have added the definition of the scalar product.
            $endgroup$
            – Martin R
            Jan 2 at 13:58










          • $begingroup$
            Ok, but if I understood well, I can choose the scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 14:00










          • $begingroup$
            @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
            $endgroup$
            – Martin R
            Jan 2 at 14:06










          • $begingroup$
            ok, I understand, thanks for your time @Martin_R
            $endgroup$
            – VirtualUser
            Jan 2 at 14:13














          2












          2








          2





          $begingroup$

          With your choice of $x$ and $y$ the right-hand side would be
          $$
          left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
          $$



          But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
          and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
          $$
          leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
          $$

          gives the intended result.






          share|cite|improve this answer











          $endgroup$



          With your choice of $x$ and $y$ the right-hand side would be
          $$
          left( sum_{k=1}^{n} frac{1}{k^4} right) cdot left(sum_{k=1}^{n} left| z_kright|^4 right) , .
          $$



          But applying Cauchy-Schwarz to $vec x = (z_1, ldots, z_n)^T$
          and $vec y = (1, frac 12,ldots frac 1n)^T$ with the standard complex inner product
          $$
          leftlangle vec x, vec yrightrangle = sum_{k=1}^{n} x_k cdot bar y_k
          $$

          gives the intended result.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 2 at 13:52

























          answered Jan 2 at 13:45









          Martin RMartin R

          27.9k33255




          27.9k33255












          • $begingroup$
            Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 13:47










          • $begingroup$
            @VirtualUser: I have added the definition of the scalar product.
            $endgroup$
            – Martin R
            Jan 2 at 13:58










          • $begingroup$
            Ok, but if I understood well, I can choose the scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 14:00










          • $begingroup$
            @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
            $endgroup$
            – Martin R
            Jan 2 at 14:06










          • $begingroup$
            ok, I understand, thanks for your time @Martin_R
            $endgroup$
            – VirtualUser
            Jan 2 at 14:13


















          • $begingroup$
            Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 13:47










          • $begingroup$
            @VirtualUser: I have added the definition of the scalar product.
            $endgroup$
            – Martin R
            Jan 2 at 13:58










          • $begingroup$
            Ok, but if I understood well, I can choose the scalar product?
            $endgroup$
            – VirtualUser
            Jan 2 at 14:00










          • $begingroup$
            @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
            $endgroup$
            – Martin R
            Jan 2 at 14:06










          • $begingroup$
            ok, I understand, thanks for your time @Martin_R
            $endgroup$
            – VirtualUser
            Jan 2 at 14:13
















          $begingroup$
          Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
          $endgroup$
          – VirtualUser
          Jan 2 at 13:47




          $begingroup$
          Ahh, ok, there is mistake, but how about defining scalar product? Can I do this or should I consider situation in the general definition of scalar product?
          $endgroup$
          – VirtualUser
          Jan 2 at 13:47












          $begingroup$
          @VirtualUser: I have added the definition of the scalar product.
          $endgroup$
          – Martin R
          Jan 2 at 13:58




          $begingroup$
          @VirtualUser: I have added the definition of the scalar product.
          $endgroup$
          – Martin R
          Jan 2 at 13:58












          $begingroup$
          Ok, but if I understood well, I can choose the scalar product?
          $endgroup$
          – VirtualUser
          Jan 2 at 14:00




          $begingroup$
          Ok, but if I understood well, I can choose the scalar product?
          $endgroup$
          – VirtualUser
          Jan 2 at 14:00












          $begingroup$
          @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
          $endgroup$
          – Martin R
          Jan 2 at 14:06




          $begingroup$
          @VirtualUser: $| langle x,y rangle |^2 le langle x,x rangle cdot langle y,y rangle$ holds in any inner product space, you can define $langle x,y rangle $ as you like as long as it satisfies the rules for an inner product. – This particular choice (the “standard“ complex inner product) gives the intended result.
          $endgroup$
          – Martin R
          Jan 2 at 14:06












          $begingroup$
          ok, I understand, thanks for your time @Martin_R
          $endgroup$
          – VirtualUser
          Jan 2 at 14:13




          $begingroup$
          ok, I understand, thanks for your time @Martin_R
          $endgroup$
          – VirtualUser
          Jan 2 at 14:13


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059485%2fprove-sum-k-1n-fracz-kk-2-le-sum-k-1n-frac1k2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅