super commutation of matrices












0












$begingroup$


Let $M_{p|q}(mathbb{C}) = M_{p|q}(mathbb{C})_0 oplus M_{p|q}(mathbb{C})_1$ be the super algebra of all $(p+q) times (p+q)$ matrices.



Let $A, B in M_{p|q}(mathbb{C})$ (not necessarily homogeneous), If anybody can help me with finding the necessary and sufficient condition for $A$ and $B$ to super commute, that would be very helpful to me.



Super commutator is defined as $[X,Y] = XY - (-1)^{|X||Y|}XY ,forall, X,Y in M_{p|q}(mathbb{C})_0 sqcup M_{p|q}(mathbb{C})_1$ and extend this definition bilinearly to full $M_{p|q}(mathbb{C})$. $|X| = text{homogeneous degree of X}$



Thanks for your thoughts.



Have a good day.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $M_{p|q}(mathbb{C}) = M_{p|q}(mathbb{C})_0 oplus M_{p|q}(mathbb{C})_1$ be the super algebra of all $(p+q) times (p+q)$ matrices.



    Let $A, B in M_{p|q}(mathbb{C})$ (not necessarily homogeneous), If anybody can help me with finding the necessary and sufficient condition for $A$ and $B$ to super commute, that would be very helpful to me.



    Super commutator is defined as $[X,Y] = XY - (-1)^{|X||Y|}XY ,forall, X,Y in M_{p|q}(mathbb{C})_0 sqcup M_{p|q}(mathbb{C})_1$ and extend this definition bilinearly to full $M_{p|q}(mathbb{C})$. $|X| = text{homogeneous degree of X}$



    Thanks for your thoughts.



    Have a good day.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $M_{p|q}(mathbb{C}) = M_{p|q}(mathbb{C})_0 oplus M_{p|q}(mathbb{C})_1$ be the super algebra of all $(p+q) times (p+q)$ matrices.



      Let $A, B in M_{p|q}(mathbb{C})$ (not necessarily homogeneous), If anybody can help me with finding the necessary and sufficient condition for $A$ and $B$ to super commute, that would be very helpful to me.



      Super commutator is defined as $[X,Y] = XY - (-1)^{|X||Y|}XY ,forall, X,Y in M_{p|q}(mathbb{C})_0 sqcup M_{p|q}(mathbb{C})_1$ and extend this definition bilinearly to full $M_{p|q}(mathbb{C})$. $|X| = text{homogeneous degree of X}$



      Thanks for your thoughts.



      Have a good day.










      share|cite|improve this question











      $endgroup$




      Let $M_{p|q}(mathbb{C}) = M_{p|q}(mathbb{C})_0 oplus M_{p|q}(mathbb{C})_1$ be the super algebra of all $(p+q) times (p+q)$ matrices.



      Let $A, B in M_{p|q}(mathbb{C})$ (not necessarily homogeneous), If anybody can help me with finding the necessary and sufficient condition for $A$ and $B$ to super commute, that would be very helpful to me.



      Super commutator is defined as $[X,Y] = XY - (-1)^{|X||Y|}XY ,forall, X,Y in M_{p|q}(mathbb{C})_0 sqcup M_{p|q}(mathbb{C})_1$ and extend this definition bilinearly to full $M_{p|q}(mathbb{C})$. $|X| = text{homogeneous degree of X}$



      Thanks for your thoughts.



      Have a good day.







      matrices matrix-equations superalgebra lie-superalgebras






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 19 '18 at 5:11







      GA316

















      asked Dec 17 '18 at 17:50









      GA316GA316

      2,6521232




      2,6521232






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          If $$A~=~A_0+A_1qquadtext{and}qquad B~=~B_0+B_1,tag{1}$$ then the supercommutator
          $$[A,B]~=~[A,B]_0+[A,B]_1 tag{2}$$
          decomposes as
          $$[A,B]_0~=~[A_0,B_0]+[A_1,B_1]qquadtext{and}qquad [A,B]_1~=~[A_0,B_1]+[A_0,B_1].tag{3}$$
          In particular$$ Atext{ and }Btext{ supercommute}quadLeftrightarrowquad
          [A,B]~=~0quadLeftrightarrowquad [A,B]_0~=~0~~wedge~~[A,B]_1 ~=~0,tag{4}$$

          cf. OP's question.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044236%2fsuper-commutation-of-matrices%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            If $$A~=~A_0+A_1qquadtext{and}qquad B~=~B_0+B_1,tag{1}$$ then the supercommutator
            $$[A,B]~=~[A,B]_0+[A,B]_1 tag{2}$$
            decomposes as
            $$[A,B]_0~=~[A_0,B_0]+[A_1,B_1]qquadtext{and}qquad [A,B]_1~=~[A_0,B_1]+[A_0,B_1].tag{3}$$
            In particular$$ Atext{ and }Btext{ supercommute}quadLeftrightarrowquad
            [A,B]~=~0quadLeftrightarrowquad [A,B]_0~=~0~~wedge~~[A,B]_1 ~=~0,tag{4}$$

            cf. OP's question.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              If $$A~=~A_0+A_1qquadtext{and}qquad B~=~B_0+B_1,tag{1}$$ then the supercommutator
              $$[A,B]~=~[A,B]_0+[A,B]_1 tag{2}$$
              decomposes as
              $$[A,B]_0~=~[A_0,B_0]+[A_1,B_1]qquadtext{and}qquad [A,B]_1~=~[A_0,B_1]+[A_0,B_1].tag{3}$$
              In particular$$ Atext{ and }Btext{ supercommute}quadLeftrightarrowquad
              [A,B]~=~0quadLeftrightarrowquad [A,B]_0~=~0~~wedge~~[A,B]_1 ~=~0,tag{4}$$

              cf. OP's question.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                If $$A~=~A_0+A_1qquadtext{and}qquad B~=~B_0+B_1,tag{1}$$ then the supercommutator
                $$[A,B]~=~[A,B]_0+[A,B]_1 tag{2}$$
                decomposes as
                $$[A,B]_0~=~[A_0,B_0]+[A_1,B_1]qquadtext{and}qquad [A,B]_1~=~[A_0,B_1]+[A_0,B_1].tag{3}$$
                In particular$$ Atext{ and }Btext{ supercommute}quadLeftrightarrowquad
                [A,B]~=~0quadLeftrightarrowquad [A,B]_0~=~0~~wedge~~[A,B]_1 ~=~0,tag{4}$$

                cf. OP's question.






                share|cite|improve this answer









                $endgroup$



                If $$A~=~A_0+A_1qquadtext{and}qquad B~=~B_0+B_1,tag{1}$$ then the supercommutator
                $$[A,B]~=~[A,B]_0+[A,B]_1 tag{2}$$
                decomposes as
                $$[A,B]_0~=~[A_0,B_0]+[A_1,B_1]qquadtext{and}qquad [A,B]_1~=~[A_0,B_1]+[A_0,B_1].tag{3}$$
                In particular$$ Atext{ and }Btext{ supercommute}quadLeftrightarrowquad
                [A,B]~=~0quadLeftrightarrowquad [A,B]_0~=~0~~wedge~~[A,B]_1 ~=~0,tag{4}$$

                cf. OP's question.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 30 '18 at 11:00









                QmechanicQmechanic

                4,91711855




                4,91711855






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044236%2fsuper-commutation-of-matrices%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    張江高科駅