How do you show that $e^{-asqrt{1+|x|^2}}$ is in the Schwartz space
$begingroup$
I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)
Please tell me proof.
Where,
$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$
$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$
$alpha,beta$ is multi index notations.
real-analysis distribution-theory schwartz-space
$endgroup$
add a comment |
$begingroup$
I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)
Please tell me proof.
Where,
$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$
$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$
$alpha,beta$ is multi index notations.
real-analysis distribution-theory schwartz-space
$endgroup$
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54
add a comment |
$begingroup$
I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)
Please tell me proof.
Where,
$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$
$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$
$alpha,beta$ is multi index notations.
real-analysis distribution-theory schwartz-space
$endgroup$
I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)
Please tell me proof.
Where,
$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$
$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$
$alpha,beta$ is multi index notations.
real-analysis distribution-theory schwartz-space
real-analysis distribution-theory schwartz-space
edited Dec 30 '18 at 11:47
Bernard
119k639112
119k639112
asked Dec 30 '18 at 11:38
NikolaiNikolai
65
65
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54
add a comment |
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form
$$p(x)(1+|x|^2)^rf(x).$$
Here $p$ is a polynomial and $rin mathbb R.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056743%2fhow-do-you-show-that-e-a-sqrt1-x-2-is-in-the-schwartz-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form
$$p(x)(1+|x|^2)^rf(x).$$
Here $p$ is a polynomial and $rin mathbb R.$
$endgroup$
add a comment |
$begingroup$
Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form
$$p(x)(1+|x|^2)^rf(x).$$
Here $p$ is a polynomial and $rin mathbb R.$
$endgroup$
add a comment |
$begingroup$
Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form
$$p(x)(1+|x|^2)^rf(x).$$
Here $p$ is a polynomial and $rin mathbb R.$
$endgroup$
Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form
$$p(x)(1+|x|^2)^rf(x).$$
Here $p$ is a polynomial and $rin mathbb R.$
answered Dec 30 '18 at 19:42
zhw.zhw.
71.9k43075
71.9k43075
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056743%2fhow-do-you-show-that-e-a-sqrt1-x-2-is-in-the-schwartz-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51
$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01
$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54