How do you show that $e^{-asqrt{1+|x|^2}}$ is in the Schwartz space












0












$begingroup$


I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)



Please tell me proof.



Where,



$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$



$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$



$alpha,beta$ is multi index notations.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
    $endgroup$
    – Paul
    Dec 30 '18 at 11:51










  • $begingroup$
    @Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:01












  • $begingroup$
    @Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:54


















0












$begingroup$


I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)



Please tell me proof.



Where,



$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$



$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$



$alpha,beta$ is multi index notations.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
    $endgroup$
    – Paul
    Dec 30 '18 at 11:51










  • $begingroup$
    @Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:01












  • $begingroup$
    @Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:54
















0












0








0





$begingroup$


I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)



Please tell me proof.



Where,



$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$



$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$



$alpha,beta$ is multi index notations.










share|cite|improve this question











$endgroup$




I want to show that $e^{-asqrt{1+|x|^2}}$ is in $mathcal{S}(mathbb{R}^d)$. ($a>0$)



Please tell me proof.



Where,



$$|x|^2 = left(sum_{j=1}^{d} |x_j|^2right)$$



$$ f(x) in mathcal{S} overset {mathrm{def}} {Leftrightarrow} displaystyle sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| < infty $$



$alpha,beta$ is multi index notations.







real-analysis distribution-theory schwartz-space






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 11:47









Bernard

119k639112




119k639112










asked Dec 30 '18 at 11:38









NikolaiNikolai

65




65












  • $begingroup$
    Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
    $endgroup$
    – Paul
    Dec 30 '18 at 11:51










  • $begingroup$
    @Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:01












  • $begingroup$
    @Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:54




















  • $begingroup$
    Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
    $endgroup$
    – Paul
    Dec 30 '18 at 11:51










  • $begingroup$
    @Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:01












  • $begingroup$
    @Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
    $endgroup$
    – Nikolai
    Dec 30 '18 at 12:54


















$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51




$begingroup$
Hint: Calculate $ sup_{x in mathbb{R}^d} |x^alphapartial^beta_x f(x)| $ and see if it is finite. No?
$endgroup$
– Paul
Dec 30 '18 at 11:51












$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01






$begingroup$
@Paul Thank you for showing hint, but I don't know how to calculate $partial^beta_xe^{-asqrt{1+|x|^2}}$.
$endgroup$
– Nikolai
Dec 30 '18 at 12:01














$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54






$begingroup$
@Kavi Rama Murthy Hmmm... let $d$=1. When $f(x)=e^{-asqrt{1+x^2}}$ ,$f'(x)=-ax(1+x^2)^{-1/2}e^{-asqrt{1+x^2}}$. $-ax(1+x^2)^{-1/2}$ is polynomial ?
$endgroup$
– Nikolai
Dec 30 '18 at 12:54












1 Answer
1






active

oldest

votes


















0












$begingroup$

Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form



$$p(x)(1+|x|^2)^rf(x).$$



Here $p$ is a polynomial and $rin mathbb R.$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056743%2fhow-do-you-show-that-e-a-sqrt1-x-2-is-in-the-schwartz-space%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form



    $$p(x)(1+|x|^2)^rf(x).$$



    Here $p$ is a polynomial and $rin mathbb R.$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form



      $$p(x)(1+|x|^2)^rf(x).$$



      Here $p$ is a polynomial and $rin mathbb R.$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form



        $$p(x)(1+|x|^2)^rf(x).$$



        Here $p$ is a polynomial and $rin mathbb R.$






        share|cite|improve this answer









        $endgroup$



        Hint: Show by induction that every derivative of $f$ is a finite sum of functions of the form



        $$p(x)(1+|x|^2)^rf(x).$$



        Here $p$ is a polynomial and $rin mathbb R.$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 30 '18 at 19:42









        zhw.zhw.

        71.9k43075




        71.9k43075






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056743%2fhow-do-you-show-that-e-a-sqrt1-x-2-is-in-the-schwartz-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅