How to find the sum of another series
How do I find the sum of a series
$$sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}$$
sequences-and-series
add a comment |
How do I find the sum of a series
$$sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}$$
sequences-and-series
Try something along these lines.
– Clement C.
Dec 24 at 20:52
1
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24
add a comment |
How do I find the sum of a series
$$sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}$$
sequences-and-series
How do I find the sum of a series
$$sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}$$
sequences-and-series
sequences-and-series
asked Dec 24 at 20:49
Some student
62
62
Try something along these lines.
– Clement C.
Dec 24 at 20:52
1
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24
add a comment |
Try something along these lines.
– Clement C.
Dec 24 at 20:52
1
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24
Try something along these lines.
– Clement C.
Dec 24 at 20:52
Try something along these lines.
– Clement C.
Dec 24 at 20:52
1
1
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24
add a comment |
2 Answers
2
active
oldest
votes
Write $i=x,,j=y-x,,k=z-y$ so your sum is $sum_{ijk}frac{1}{60^i 20^j 5^k}$, all indices starting at $1$. But $sum_ifrac{1}{n^i}=frac{1}{n-1}$, so the result is $frac{1}{59times 19times 4}$.
add a comment |
Direct calculation through expansion:
$$begin{align}sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}=
&color{red}{frac13left[frac1{4^2}left(frac1{5^3}+frac1{5^4}+cdotsright)+frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+frac1{4^4}left(frac1{5^5}+frac1{5^6}+cdotsright)+cdotsright]}+cdots=\
=&color{red}{frac13left[frac1{4^2}cdot frac{1}{4cdot 5^2}+frac1{4^3}cdot frac1{4cdot 5^3}+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}cdot frac1{4cdot 5^3}+frac1{4^4}cdot frac1{4cdot 5^4}+cdotsright]}+cdots=\
=&color{red}{frac13cdot frac{1}{4^3cdot 5^2}cdot frac{4cdot 5}{19}}+\
+&color{blue}{frac1{3^2}cdot frac{1}{4^4cdot 5^3}cdot frac{4cdot 5}{19}}+cdots=\
=&frac{1}{3cdot 4^2cdot 5cdot 19}cdot frac{3cdot 4cdot 5}{59}=\
=&frac1{4cdot 19cdot 59}.end{align}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051623%2fhow-to-find-the-sum-of-another-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Write $i=x,,j=y-x,,k=z-y$ so your sum is $sum_{ijk}frac{1}{60^i 20^j 5^k}$, all indices starting at $1$. But $sum_ifrac{1}{n^i}=frac{1}{n-1}$, so the result is $frac{1}{59times 19times 4}$.
add a comment |
Write $i=x,,j=y-x,,k=z-y$ so your sum is $sum_{ijk}frac{1}{60^i 20^j 5^k}$, all indices starting at $1$. But $sum_ifrac{1}{n^i}=frac{1}{n-1}$, so the result is $frac{1}{59times 19times 4}$.
add a comment |
Write $i=x,,j=y-x,,k=z-y$ so your sum is $sum_{ijk}frac{1}{60^i 20^j 5^k}$, all indices starting at $1$. But $sum_ifrac{1}{n^i}=frac{1}{n-1}$, so the result is $frac{1}{59times 19times 4}$.
Write $i=x,,j=y-x,,k=z-y$ so your sum is $sum_{ijk}frac{1}{60^i 20^j 5^k}$, all indices starting at $1$. But $sum_ifrac{1}{n^i}=frac{1}{n-1}$, so the result is $frac{1}{59times 19times 4}$.
answered Dec 24 at 20:54
J.G.
22.4k22035
22.4k22035
add a comment |
add a comment |
Direct calculation through expansion:
$$begin{align}sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}=
&color{red}{frac13left[frac1{4^2}left(frac1{5^3}+frac1{5^4}+cdotsright)+frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+frac1{4^4}left(frac1{5^5}+frac1{5^6}+cdotsright)+cdotsright]}+cdots=\
=&color{red}{frac13left[frac1{4^2}cdot frac{1}{4cdot 5^2}+frac1{4^3}cdot frac1{4cdot 5^3}+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}cdot frac1{4cdot 5^3}+frac1{4^4}cdot frac1{4cdot 5^4}+cdotsright]}+cdots=\
=&color{red}{frac13cdot frac{1}{4^3cdot 5^2}cdot frac{4cdot 5}{19}}+\
+&color{blue}{frac1{3^2}cdot frac{1}{4^4cdot 5^3}cdot frac{4cdot 5}{19}}+cdots=\
=&frac{1}{3cdot 4^2cdot 5cdot 19}cdot frac{3cdot 4cdot 5}{59}=\
=&frac1{4cdot 19cdot 59}.end{align}$$
add a comment |
Direct calculation through expansion:
$$begin{align}sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}=
&color{red}{frac13left[frac1{4^2}left(frac1{5^3}+frac1{5^4}+cdotsright)+frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+frac1{4^4}left(frac1{5^5}+frac1{5^6}+cdotsright)+cdotsright]}+cdots=\
=&color{red}{frac13left[frac1{4^2}cdot frac{1}{4cdot 5^2}+frac1{4^3}cdot frac1{4cdot 5^3}+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}cdot frac1{4cdot 5^3}+frac1{4^4}cdot frac1{4cdot 5^4}+cdotsright]}+cdots=\
=&color{red}{frac13cdot frac{1}{4^3cdot 5^2}cdot frac{4cdot 5}{19}}+\
+&color{blue}{frac1{3^2}cdot frac{1}{4^4cdot 5^3}cdot frac{4cdot 5}{19}}+cdots=\
=&frac{1}{3cdot 4^2cdot 5cdot 19}cdot frac{3cdot 4cdot 5}{59}=\
=&frac1{4cdot 19cdot 59}.end{align}$$
add a comment |
Direct calculation through expansion:
$$begin{align}sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}=
&color{red}{frac13left[frac1{4^2}left(frac1{5^3}+frac1{5^4}+cdotsright)+frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+frac1{4^4}left(frac1{5^5}+frac1{5^6}+cdotsright)+cdotsright]}+cdots=\
=&color{red}{frac13left[frac1{4^2}cdot frac{1}{4cdot 5^2}+frac1{4^3}cdot frac1{4cdot 5^3}+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}cdot frac1{4cdot 5^3}+frac1{4^4}cdot frac1{4cdot 5^4}+cdotsright]}+cdots=\
=&color{red}{frac13cdot frac{1}{4^3cdot 5^2}cdot frac{4cdot 5}{19}}+\
+&color{blue}{frac1{3^2}cdot frac{1}{4^4cdot 5^3}cdot frac{4cdot 5}{19}}+cdots=\
=&frac{1}{3cdot 4^2cdot 5cdot 19}cdot frac{3cdot 4cdot 5}{59}=\
=&frac1{4cdot 19cdot 59}.end{align}$$
Direct calculation through expansion:
$$begin{align}sum_{1 leq x < y < z}^infty frac{1}{3^x4^y5^z}=
&color{red}{frac13left[frac1{4^2}left(frac1{5^3}+frac1{5^4}+cdotsright)+frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}left(frac1{5^4}+frac1{5^5}+cdotsright)+frac1{4^4}left(frac1{5^5}+frac1{5^6}+cdotsright)+cdotsright]}+cdots=\
=&color{red}{frac13left[frac1{4^2}cdot frac{1}{4cdot 5^2}+frac1{4^3}cdot frac1{4cdot 5^3}+cdotsright]}+\
+&color{blue}{frac1{3^2}left[frac1{4^3}cdot frac1{4cdot 5^3}+frac1{4^4}cdot frac1{4cdot 5^4}+cdotsright]}+cdots=\
=&color{red}{frac13cdot frac{1}{4^3cdot 5^2}cdot frac{4cdot 5}{19}}+\
+&color{blue}{frac1{3^2}cdot frac{1}{4^4cdot 5^3}cdot frac{4cdot 5}{19}}+cdots=\
=&frac{1}{3cdot 4^2cdot 5cdot 19}cdot frac{3cdot 4cdot 5}{59}=\
=&frac1{4cdot 19cdot 59}.end{align}$$
answered 2 days ago
farruhota
19.1k2736
19.1k2736
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051623%2fhow-to-find-the-sum-of-another-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Try something along these lines.
– Clement C.
Dec 24 at 20:52
1
Who DELETED math.stackexchange.com/questions/3050493??
– cgiovanardi
Dec 25 at 15:24