Find $P(2Y_{(1)} < Y_{(2)})$ of a Uniformly Distributed Random Variable
$begingroup$
Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.
Attempted solution:
We know that
$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$
Therefore, we determine
$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$
Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$
$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$
By differentiating, we get the density functions
$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$
I'm not too sure where to go from here.
probability-distributions order-statistics
$endgroup$
add a comment |
$begingroup$
Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.
Attempted solution:
We know that
$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$
Therefore, we determine
$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$
Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$
$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$
By differentiating, we get the density functions
$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$
I'm not too sure where to go from here.
probability-distributions order-statistics
$endgroup$
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35
add a comment |
$begingroup$
Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.
Attempted solution:
We know that
$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$
Therefore, we determine
$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$
Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$
$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$
By differentiating, we get the density functions
$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$
I'm not too sure where to go from here.
probability-distributions order-statistics
$endgroup$
Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.
Attempted solution:
We know that
$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$
Therefore, we determine
$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$
Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$
$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$
By differentiating, we get the density functions
$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$
I'm not too sure where to go from here.
probability-distributions order-statistics
probability-distributions order-statistics
asked Jan 2 at 0:01
Bryden CBryden C
31918
31918
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35
add a comment |
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,
begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}
$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$
$endgroup$
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059009%2ffind-p2y-1-y-2-of-a-uniformly-distributed-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,
begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}
$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$
$endgroup$
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
add a comment |
$begingroup$
Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,
begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}
$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$
$endgroup$
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
add a comment |
$begingroup$
Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,
begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}
$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$
$endgroup$
Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,
begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}
$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$
edited Jan 2 at 3:04
answered Jan 2 at 2:38
d.k.o.d.k.o.
8,857628
8,857628
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
add a comment |
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059009%2ffind-p2y-1-y-2-of-a-uniformly-distributed-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35