Find $P(2Y_{(1)} < Y_{(2)})$ of a Uniformly Distributed Random Variable












1












$begingroup$



Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.




Attempted solution:



We know that



$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$



Therefore, we determine



$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$



Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$



$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$



By differentiating, we get the density functions



$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$



I'm not too sure where to go from here.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
    $endgroup$
    – StubbornAtom
    Jan 2 at 6:35
















1












$begingroup$



Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.




Attempted solution:



We know that



$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$



Therefore, we determine



$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$



Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$



$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$



By differentiating, we get the density functions



$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$



I'm not too sure where to go from here.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
    $endgroup$
    – StubbornAtom
    Jan 2 at 6:35














1












1








1


0



$begingroup$



Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.




Attempted solution:



We know that



$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$



Therefore, we determine



$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$



Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$



$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$



By differentiating, we get the density functions



$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$



I'm not too sure where to go from here.










share|cite|improve this question









$endgroup$





Denote $Y_{(1)} = min(Y_1,Y_2)$ and $Y_{(2)} = max(Y_1,Y_2)$.
Let $Y_1$ and $Y_2$ be independent and uniformly distributed over the interval $(0, 1)$. Find
$P(2Y_{(1)} < Y_{(2)})$.




Attempted solution:



We know that



$$
f(y_i) =
begin{cases}
1 & 0<y_i<1\
0 & else
end{cases}
$$



Therefore, we determine



$$
F(y_i) =
begin{cases}
0 & y_i < 0\
y_i & 0<y_i<1\
1 & y_i > 1\
end{cases}
$$



Using this, we can find the distribution functions for $Y_{(1)}$ and $Y_{(2)}$



$$
Y_{(1)} = 1 - (1-F(y))^2\
Y_{(2)} = F(y)^2
$$



By differentiating, we get the density functions



$$
f_{Y_{(1)}}(y) = 2(1-y)\
f_{Y_{(2)}}(y) = 2y
$$



I'm not too sure where to go from here.







probability-distributions order-statistics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 0:01









Bryden CBryden C

31918




31918












  • $begingroup$
    Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
    $endgroup$
    – StubbornAtom
    Jan 2 at 6:35


















  • $begingroup$
    Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
    $endgroup$
    – StubbornAtom
    Jan 2 at 6:35
















$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35




$begingroup$
Similar to the answer below, using total probability theorem, begin{align} P(2Y_{(1)}<Y_{(2)})&=P(2Y_{(1)}<Y_{(2)},Y_1<Y_2)+P(2Y_{(1)}<Y_{(2)},Y_1ge Y_2) \&=P(2Y_1<Y_2,Y_1<Y_2)+P(2Y_2<Y_1,Y_2< Y_1) \&=2times P(2Y_1<Y_2) end{align} If you can justify the steps above, the rest is straightforward.
$endgroup$
– StubbornAtom
Jan 2 at 6:35










1 Answer
1






active

oldest

votes


















1












$begingroup$

Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,



begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}





$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Alright, that makes sense. I'm still not too sure how to continue, however.
    $endgroup$
    – Bryden C
    Jan 2 at 2:57











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059009%2ffind-p2y-1-y-2-of-a-uniformly-distributed-random-variable%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,



begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}





$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Alright, that makes sense. I'm still not too sure how to continue, however.
    $endgroup$
    – Bryden C
    Jan 2 at 2:57
















1












$begingroup$

Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,



begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}





$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Alright, that makes sense. I'm still not too sure how to continue, however.
    $endgroup$
    – Bryden C
    Jan 2 at 2:57














1












1








1





$begingroup$

Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,



begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}





$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$






share|cite|improve this answer











$endgroup$



Since $avee b=(a+b)/2+|a-b|/2$ and $awedge b=(a+b)/2-|a-b|/2$,



begin{align}
mathsf{P}(2Y_{(1)}<Y_{(2)})&=mathsf{P}(Y_1+Y_2<3|Y_1-Y_2|) \
&=mathsf{P}(Y_1+Y_2<3(Y_1-Y_2))+mathsf{P}(Y_1+Y_2<3(Y_2-Y_1)) \
&=mathsf{P}(2Y_2<Y_1)+mathsf{P}(2Y_1<Y_2)=1/2.
end{align}





$$
mathsf{P}(2Y_2<Y_1)=int_0^1mathsf{P}(Y_2<y/2)dy=int_0^1(y/2)dy=1/4.
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 3:04

























answered Jan 2 at 2:38









d.k.o.d.k.o.

8,857628




8,857628












  • $begingroup$
    Alright, that makes sense. I'm still not too sure how to continue, however.
    $endgroup$
    – Bryden C
    Jan 2 at 2:57


















  • $begingroup$
    Alright, that makes sense. I'm still not too sure how to continue, however.
    $endgroup$
    – Bryden C
    Jan 2 at 2:57
















$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57




$begingroup$
Alright, that makes sense. I'm still not too sure how to continue, however.
$endgroup$
– Bryden C
Jan 2 at 2:57


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059009%2ffind-p2y-1-y-2-of-a-uniformly-distributed-random-variable%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg