Explanation of gradient descent on convex quadratic












0














Can someone explain the following:
$$f(x) = frac{1}{2}w^TAw - b^Tw$$



Assume AA is symmetric and invertible, then the optimal solution $w^{star}$ occurs at



$$w^{star} = A^{-1}b$$
and
$$nabla f(w) = Aw - b $$



can someone explain how we got $w^{star}$ and $nabla f(w)$?
I need detailed math overview of that, I forgot most of calc/LA.



Thank you!










share|cite|improve this question



























    0














    Can someone explain the following:
    $$f(x) = frac{1}{2}w^TAw - b^Tw$$



    Assume AA is symmetric and invertible, then the optimal solution $w^{star}$ occurs at



    $$w^{star} = A^{-1}b$$
    and
    $$nabla f(w) = Aw - b $$



    can someone explain how we got $w^{star}$ and $nabla f(w)$?
    I need detailed math overview of that, I forgot most of calc/LA.



    Thank you!










    share|cite|improve this question

























      0












      0








      0







      Can someone explain the following:
      $$f(x) = frac{1}{2}w^TAw - b^Tw$$



      Assume AA is symmetric and invertible, then the optimal solution $w^{star}$ occurs at



      $$w^{star} = A^{-1}b$$
      and
      $$nabla f(w) = Aw - b $$



      can someone explain how we got $w^{star}$ and $nabla f(w)$?
      I need detailed math overview of that, I forgot most of calc/LA.



      Thank you!










      share|cite|improve this question













      Can someone explain the following:
      $$f(x) = frac{1}{2}w^TAw - b^Tw$$



      Assume AA is symmetric and invertible, then the optimal solution $w^{star}$ occurs at



      $$w^{star} = A^{-1}b$$
      and
      $$nabla f(w) = Aw - b $$



      can someone explain how we got $w^{star}$ and $nabla f(w)$?
      I need detailed math overview of that, I forgot most of calc/LA.



      Thank you!







      calculus linear-algebra quadratics gradient-descent






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 23 hours ago









      YohanRoth

      6191713




      6191713






















          1 Answer
          1






          active

          oldest

          votes


















          1














          I think you have a minor typo: $f(x)$ should be $f(w)$.



          $f$ is a function of several variables $w_1, w_2, ldots$. If you find the partial derivatives $partial f / partial w_i$ for each $i$, you can combine them into a vector to form the gradient $nabla f$. It would be good for you to do this slowly. It may be helpful to rewrite $f$ as
          $$f(w) = frac{1}{2} sum_i sum_j A_{ij} w_i w_j - sum_i b_i w_i.$$
          Note that there are "shortcuts" for computing this gradient using matrix calculus, but they won't be particularly helpful if you don't understand what's going on.



          Once you have the gradient, any solution to $nabla f(w) = 0$ is a critical/stationary point. In this case, there is only one, namely $w^star = A^{-1} b$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051728%2fexplanation-of-gradient-descent-on-convex-quadratic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            I think you have a minor typo: $f(x)$ should be $f(w)$.



            $f$ is a function of several variables $w_1, w_2, ldots$. If you find the partial derivatives $partial f / partial w_i$ for each $i$, you can combine them into a vector to form the gradient $nabla f$. It would be good for you to do this slowly. It may be helpful to rewrite $f$ as
            $$f(w) = frac{1}{2} sum_i sum_j A_{ij} w_i w_j - sum_i b_i w_i.$$
            Note that there are "shortcuts" for computing this gradient using matrix calculus, but they won't be particularly helpful if you don't understand what's going on.



            Once you have the gradient, any solution to $nabla f(w) = 0$ is a critical/stationary point. In this case, there is only one, namely $w^star = A^{-1} b$.






            share|cite|improve this answer


























              1














              I think you have a minor typo: $f(x)$ should be $f(w)$.



              $f$ is a function of several variables $w_1, w_2, ldots$. If you find the partial derivatives $partial f / partial w_i$ for each $i$, you can combine them into a vector to form the gradient $nabla f$. It would be good for you to do this slowly. It may be helpful to rewrite $f$ as
              $$f(w) = frac{1}{2} sum_i sum_j A_{ij} w_i w_j - sum_i b_i w_i.$$
              Note that there are "shortcuts" for computing this gradient using matrix calculus, but they won't be particularly helpful if you don't understand what's going on.



              Once you have the gradient, any solution to $nabla f(w) = 0$ is a critical/stationary point. In this case, there is only one, namely $w^star = A^{-1} b$.






              share|cite|improve this answer
























                1












                1








                1






                I think you have a minor typo: $f(x)$ should be $f(w)$.



                $f$ is a function of several variables $w_1, w_2, ldots$. If you find the partial derivatives $partial f / partial w_i$ for each $i$, you can combine them into a vector to form the gradient $nabla f$. It would be good for you to do this slowly. It may be helpful to rewrite $f$ as
                $$f(w) = frac{1}{2} sum_i sum_j A_{ij} w_i w_j - sum_i b_i w_i.$$
                Note that there are "shortcuts" for computing this gradient using matrix calculus, but they won't be particularly helpful if you don't understand what's going on.



                Once you have the gradient, any solution to $nabla f(w) = 0$ is a critical/stationary point. In this case, there is only one, namely $w^star = A^{-1} b$.






                share|cite|improve this answer












                I think you have a minor typo: $f(x)$ should be $f(w)$.



                $f$ is a function of several variables $w_1, w_2, ldots$. If you find the partial derivatives $partial f / partial w_i$ for each $i$, you can combine them into a vector to form the gradient $nabla f$. It would be good for you to do this slowly. It may be helpful to rewrite $f$ as
                $$f(w) = frac{1}{2} sum_i sum_j A_{ij} w_i w_j - sum_i b_i w_i.$$
                Note that there are "shortcuts" for computing this gradient using matrix calculus, but they won't be particularly helpful if you don't understand what's going on.



                Once you have the gradient, any solution to $nabla f(w) = 0$ is a critical/stationary point. In this case, there is only one, namely $w^star = A^{-1} b$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 23 hours ago









                angryavian

                38.6k23180




                38.6k23180






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051728%2fexplanation-of-gradient-descent-on-convex-quadratic%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    張江高科駅