DETERMINANT of matrix $M_n$
$begingroup$
Let $M_n=
begin{bmatrix}
n-1 & n-2 & n-3 & ... & 1& 0\
n-2 & n-3 & n-4 & ... & 0& 1\
n-3 & n-4 & n-5 & ... & 1&2\
vdots & vdots & vdots & ddots & vdots & vdots\
1& 0 & 1 &...& n-3 & n-2\
0 & 1 & 2 &... & n-2&n-1
end{bmatrix}$
What's $det(M_n)$ ?
Can someone help me with this, I tried Using Laplace's formula and transformations of rows but it didn't work.
original problem
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let $M_n=
begin{bmatrix}
n-1 & n-2 & n-3 & ... & 1& 0\
n-2 & n-3 & n-4 & ... & 0& 1\
n-3 & n-4 & n-5 & ... & 1&2\
vdots & vdots & vdots & ddots & vdots & vdots\
1& 0 & 1 &...& n-3 & n-2\
0 & 1 & 2 &... & n-2&n-1
end{bmatrix}$
What's $det(M_n)$ ?
Can someone help me with this, I tried Using Laplace's formula and transformations of rows but it didn't work.
original problem
linear-algebra
$endgroup$
1
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
1
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
1
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
1
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07
add a comment |
$begingroup$
Let $M_n=
begin{bmatrix}
n-1 & n-2 & n-3 & ... & 1& 0\
n-2 & n-3 & n-4 & ... & 0& 1\
n-3 & n-4 & n-5 & ... & 1&2\
vdots & vdots & vdots & ddots & vdots & vdots\
1& 0 & 1 &...& n-3 & n-2\
0 & 1 & 2 &... & n-2&n-1
end{bmatrix}$
What's $det(M_n)$ ?
Can someone help me with this, I tried Using Laplace's formula and transformations of rows but it didn't work.
original problem
linear-algebra
$endgroup$
Let $M_n=
begin{bmatrix}
n-1 & n-2 & n-3 & ... & 1& 0\
n-2 & n-3 & n-4 & ... & 0& 1\
n-3 & n-4 & n-5 & ... & 1&2\
vdots & vdots & vdots & ddots & vdots & vdots\
1& 0 & 1 &...& n-3 & n-2\
0 & 1 & 2 &... & n-2&n-1
end{bmatrix}$
What's $det(M_n)$ ?
Can someone help me with this, I tried Using Laplace's formula and transformations of rows but it didn't work.
original problem
linear-algebra
linear-algebra
edited Jan 19 at 11:05
m2017m
asked Jan 18 at 22:04
m2017mm2017m
94
94
1
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
1
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
1
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
1
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07
add a comment |
1
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
1
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
1
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
1
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07
1
1
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
1
1
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
1
1
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
1
1
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078810%2fdeterminant-of-matrix-m-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078810%2fdeterminant-of-matrix-m-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Looks like a special case of math.stackexchange.com/questions/770117/….
$endgroup$
– Martin R
Jan 18 at 22:07
1
$begingroup$
@MartinR Not sure. In this case $a_{11}=a_1=n-1$, while $a_{n2}=1neq a_{11}$. Nevertheless, it may be a OP's typo. We will see...
$endgroup$
– Dog_69
Jan 18 at 22:42
1
$begingroup$
@m2017m Please see MartinR's comment and check your formula. There might be a typo in you second and third columns.
$endgroup$
– Dog_69
Jan 18 at 22:46
1
$begingroup$
there is no typo, formula is good
$endgroup$
– m2017m
Jan 19 at 11:07