Time shifted Fourier series
$begingroup$
The periodic pulse function can be represented as a Fourier series as,
$$f_f(t) = a_0 + sum_{i=1}^inf (a_n cos(nomega_0t))$$
where
$$a_0 = Afrac{T_p}{T}$$
$$a_n = 2frac{A}{npi}sin(npifrac{T_p}{T})$$
with period $T$, amplitude $A$ and pulse width $T_p$.
Two periodic pulse functions with different pulse widths/duty cycles represented as Fourier series can be summed as shown graphically here. In these functions, $omega_2 = omega_1N$ where $N$ is an arbitrary number. The duty cycles are given as $frac{T_{p1}}{T_{1}} = frac{1}{N}$, and $frac{T_{p2}}{T_{2}} = 0.5$. Function 1 is negative.
However, I would like the second Fourier series representation to be time shifted, so that the summed function is as shown graphically here.
Is this possible to do with a Fourier series representation, if so, how?
functions trigonometry fourier-analysis fourier-series generating-functions
$endgroup$
add a comment |
$begingroup$
The periodic pulse function can be represented as a Fourier series as,
$$f_f(t) = a_0 + sum_{i=1}^inf (a_n cos(nomega_0t))$$
where
$$a_0 = Afrac{T_p}{T}$$
$$a_n = 2frac{A}{npi}sin(npifrac{T_p}{T})$$
with period $T$, amplitude $A$ and pulse width $T_p$.
Two periodic pulse functions with different pulse widths/duty cycles represented as Fourier series can be summed as shown graphically here. In these functions, $omega_2 = omega_1N$ where $N$ is an arbitrary number. The duty cycles are given as $frac{T_{p1}}{T_{1}} = frac{1}{N}$, and $frac{T_{p2}}{T_{2}} = 0.5$. Function 1 is negative.
However, I would like the second Fourier series representation to be time shifted, so that the summed function is as shown graphically here.
Is this possible to do with a Fourier series representation, if so, how?
functions trigonometry fourier-analysis fourier-series generating-functions
$endgroup$
add a comment |
$begingroup$
The periodic pulse function can be represented as a Fourier series as,
$$f_f(t) = a_0 + sum_{i=1}^inf (a_n cos(nomega_0t))$$
where
$$a_0 = Afrac{T_p}{T}$$
$$a_n = 2frac{A}{npi}sin(npifrac{T_p}{T})$$
with period $T$, amplitude $A$ and pulse width $T_p$.
Two periodic pulse functions with different pulse widths/duty cycles represented as Fourier series can be summed as shown graphically here. In these functions, $omega_2 = omega_1N$ where $N$ is an arbitrary number. The duty cycles are given as $frac{T_{p1}}{T_{1}} = frac{1}{N}$, and $frac{T_{p2}}{T_{2}} = 0.5$. Function 1 is negative.
However, I would like the second Fourier series representation to be time shifted, so that the summed function is as shown graphically here.
Is this possible to do with a Fourier series representation, if so, how?
functions trigonometry fourier-analysis fourier-series generating-functions
$endgroup$
The periodic pulse function can be represented as a Fourier series as,
$$f_f(t) = a_0 + sum_{i=1}^inf (a_n cos(nomega_0t))$$
where
$$a_0 = Afrac{T_p}{T}$$
$$a_n = 2frac{A}{npi}sin(npifrac{T_p}{T})$$
with period $T$, amplitude $A$ and pulse width $T_p$.
Two periodic pulse functions with different pulse widths/duty cycles represented as Fourier series can be summed as shown graphically here. In these functions, $omega_2 = omega_1N$ where $N$ is an arbitrary number. The duty cycles are given as $frac{T_{p1}}{T_{1}} = frac{1}{N}$, and $frac{T_{p2}}{T_{2}} = 0.5$. Function 1 is negative.
However, I would like the second Fourier series representation to be time shifted, so that the summed function is as shown graphically here.
Is this possible to do with a Fourier series representation, if so, how?
functions trigonometry fourier-analysis fourier-series generating-functions
functions trigonometry fourier-analysis fourier-series generating-functions
edited Mar 14 '18 at 10:14
dagfinae
asked Mar 13 '18 at 16:51
dagfinaedagfinae
65
65
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can get a general answer for a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = a_v + sum_{n = 1}^{infty}left[a_n cos(nomega_c (t-tau)) + b_n sin(nomega_c (t - tau))right]$$
Let $alpha = cos(nomega_c (t-tau))$ and let $beta= sin(nomega_c (t-tau))$. Then
begin{align*}
alpha &= cos(nomega_c t - nomega_c tau) = cos(nomega_c t)cos(nomega_c tau) + sin(nomega_c t)sin(nomega_c tau) \
beta &= sin(nomega_c t - nomega_c tau) = sin(nomega_c t)cos(nomega_c tau) - cos(nomega_c t)sin(nomega_c tau)end{align*}
We can then combine these results as follows
$$a_nalpha + b_nbeta = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }cos(nomega_c t) + { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }sin(nomega_c t). $$
We can define the following to make things simpler
$$Av_f = { a_v }_f = { frac{a_0}{2} }_f\
A_f(n,tau) = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }_f \
B_f(n,tau) = { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }_f.$$
Using the above definitions, we can define a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = Av_f + sum_{n = 1}^{infty}left[A_f(n,tau) cos(nomega_c t) + B_f(n,tau) sin(nomega_c t)right].$$
This will allow us to add two trigonometric Fourier series, each with their own distinct time-shifts as follows
$$ g(t - tau) = Av_g + sum_{n = 1}^{infty}left[A_g(n,tau) cos(nomega_c t) + B_g(n,tau) sin(nomega_c t)right] \
h(t - lambda) = Av_h + sum_{n = 1}^{infty}left[A_h(n,lambda) cos(nomega_c t) + B_h(n,lambda) sin(nomega_c t)right] $$
$$ f(t) = g(t - tau) + h(t - lambda) $$
We can setup some more definition to make things simpler as follows
begin{align*}
Av_f &= Av_g + Av_h \
A_f(n, tau, lambda) &= { A_g(n, tau) + A_h(n, lambda)} \
B_f(n, tau, lambda) &= { B_g(n, tau) + B_h(n, lambda)}. end{align*}
Then
$$
f(t) = Av_f + sum_{n = 1}^{infty}left[A_f(n, tau, lambda) cos(nomega_c t) + B_f(n, tau, lambda) sin(nomega_c t)right].
$$
$endgroup$
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2689559%2ftime-shifted-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can get a general answer for a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = a_v + sum_{n = 1}^{infty}left[a_n cos(nomega_c (t-tau)) + b_n sin(nomega_c (t - tau))right]$$
Let $alpha = cos(nomega_c (t-tau))$ and let $beta= sin(nomega_c (t-tau))$. Then
begin{align*}
alpha &= cos(nomega_c t - nomega_c tau) = cos(nomega_c t)cos(nomega_c tau) + sin(nomega_c t)sin(nomega_c tau) \
beta &= sin(nomega_c t - nomega_c tau) = sin(nomega_c t)cos(nomega_c tau) - cos(nomega_c t)sin(nomega_c tau)end{align*}
We can then combine these results as follows
$$a_nalpha + b_nbeta = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }cos(nomega_c t) + { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }sin(nomega_c t). $$
We can define the following to make things simpler
$$Av_f = { a_v }_f = { frac{a_0}{2} }_f\
A_f(n,tau) = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }_f \
B_f(n,tau) = { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }_f.$$
Using the above definitions, we can define a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = Av_f + sum_{n = 1}^{infty}left[A_f(n,tau) cos(nomega_c t) + B_f(n,tau) sin(nomega_c t)right].$$
This will allow us to add two trigonometric Fourier series, each with their own distinct time-shifts as follows
$$ g(t - tau) = Av_g + sum_{n = 1}^{infty}left[A_g(n,tau) cos(nomega_c t) + B_g(n,tau) sin(nomega_c t)right] \
h(t - lambda) = Av_h + sum_{n = 1}^{infty}left[A_h(n,lambda) cos(nomega_c t) + B_h(n,lambda) sin(nomega_c t)right] $$
$$ f(t) = g(t - tau) + h(t - lambda) $$
We can setup some more definition to make things simpler as follows
begin{align*}
Av_f &= Av_g + Av_h \
A_f(n, tau, lambda) &= { A_g(n, tau) + A_h(n, lambda)} \
B_f(n, tau, lambda) &= { B_g(n, tau) + B_h(n, lambda)}. end{align*}
Then
$$
f(t) = Av_f + sum_{n = 1}^{infty}left[A_f(n, tau, lambda) cos(nomega_c t) + B_f(n, tau, lambda) sin(nomega_c t)right].
$$
$endgroup$
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
add a comment |
$begingroup$
We can get a general answer for a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = a_v + sum_{n = 1}^{infty}left[a_n cos(nomega_c (t-tau)) + b_n sin(nomega_c (t - tau))right]$$
Let $alpha = cos(nomega_c (t-tau))$ and let $beta= sin(nomega_c (t-tau))$. Then
begin{align*}
alpha &= cos(nomega_c t - nomega_c tau) = cos(nomega_c t)cos(nomega_c tau) + sin(nomega_c t)sin(nomega_c tau) \
beta &= sin(nomega_c t - nomega_c tau) = sin(nomega_c t)cos(nomega_c tau) - cos(nomega_c t)sin(nomega_c tau)end{align*}
We can then combine these results as follows
$$a_nalpha + b_nbeta = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }cos(nomega_c t) + { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }sin(nomega_c t). $$
We can define the following to make things simpler
$$Av_f = { a_v }_f = { frac{a_0}{2} }_f\
A_f(n,tau) = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }_f \
B_f(n,tau) = { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }_f.$$
Using the above definitions, we can define a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = Av_f + sum_{n = 1}^{infty}left[A_f(n,tau) cos(nomega_c t) + B_f(n,tau) sin(nomega_c t)right].$$
This will allow us to add two trigonometric Fourier series, each with their own distinct time-shifts as follows
$$ g(t - tau) = Av_g + sum_{n = 1}^{infty}left[A_g(n,tau) cos(nomega_c t) + B_g(n,tau) sin(nomega_c t)right] \
h(t - lambda) = Av_h + sum_{n = 1}^{infty}left[A_h(n,lambda) cos(nomega_c t) + B_h(n,lambda) sin(nomega_c t)right] $$
$$ f(t) = g(t - tau) + h(t - lambda) $$
We can setup some more definition to make things simpler as follows
begin{align*}
Av_f &= Av_g + Av_h \
A_f(n, tau, lambda) &= { A_g(n, tau) + A_h(n, lambda)} \
B_f(n, tau, lambda) &= { B_g(n, tau) + B_h(n, lambda)}. end{align*}
Then
$$
f(t) = Av_f + sum_{n = 1}^{infty}left[A_f(n, tau, lambda) cos(nomega_c t) + B_f(n, tau, lambda) sin(nomega_c t)right].
$$
$endgroup$
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
add a comment |
$begingroup$
We can get a general answer for a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = a_v + sum_{n = 1}^{infty}left[a_n cos(nomega_c (t-tau)) + b_n sin(nomega_c (t - tau))right]$$
Let $alpha = cos(nomega_c (t-tau))$ and let $beta= sin(nomega_c (t-tau))$. Then
begin{align*}
alpha &= cos(nomega_c t - nomega_c tau) = cos(nomega_c t)cos(nomega_c tau) + sin(nomega_c t)sin(nomega_c tau) \
beta &= sin(nomega_c t - nomega_c tau) = sin(nomega_c t)cos(nomega_c tau) - cos(nomega_c t)sin(nomega_c tau)end{align*}
We can then combine these results as follows
$$a_nalpha + b_nbeta = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }cos(nomega_c t) + { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }sin(nomega_c t). $$
We can define the following to make things simpler
$$Av_f = { a_v }_f = { frac{a_0}{2} }_f\
A_f(n,tau) = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }_f \
B_f(n,tau) = { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }_f.$$
Using the above definitions, we can define a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = Av_f + sum_{n = 1}^{infty}left[A_f(n,tau) cos(nomega_c t) + B_f(n,tau) sin(nomega_c t)right].$$
This will allow us to add two trigonometric Fourier series, each with their own distinct time-shifts as follows
$$ g(t - tau) = Av_g + sum_{n = 1}^{infty}left[A_g(n,tau) cos(nomega_c t) + B_g(n,tau) sin(nomega_c t)right] \
h(t - lambda) = Av_h + sum_{n = 1}^{infty}left[A_h(n,lambda) cos(nomega_c t) + B_h(n,lambda) sin(nomega_c t)right] $$
$$ f(t) = g(t - tau) + h(t - lambda) $$
We can setup some more definition to make things simpler as follows
begin{align*}
Av_f &= Av_g + Av_h \
A_f(n, tau, lambda) &= { A_g(n, tau) + A_h(n, lambda)} \
B_f(n, tau, lambda) &= { B_g(n, tau) + B_h(n, lambda)}. end{align*}
Then
$$
f(t) = Av_f + sum_{n = 1}^{infty}left[A_f(n, tau, lambda) cos(nomega_c t) + B_f(n, tau, lambda) sin(nomega_c t)right].
$$
$endgroup$
We can get a general answer for a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = a_v + sum_{n = 1}^{infty}left[a_n cos(nomega_c (t-tau)) + b_n sin(nomega_c (t - tau))right]$$
Let $alpha = cos(nomega_c (t-tau))$ and let $beta= sin(nomega_c (t-tau))$. Then
begin{align*}
alpha &= cos(nomega_c t - nomega_c tau) = cos(nomega_c t)cos(nomega_c tau) + sin(nomega_c t)sin(nomega_c tau) \
beta &= sin(nomega_c t - nomega_c tau) = sin(nomega_c t)cos(nomega_c tau) - cos(nomega_c t)sin(nomega_c tau)end{align*}
We can then combine these results as follows
$$a_nalpha + b_nbeta = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }cos(nomega_c t) + { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }sin(nomega_c t). $$
We can define the following to make things simpler
$$Av_f = { a_v }_f = { frac{a_0}{2} }_f\
A_f(n,tau) = { a_ncos(nomega_c tau) - b_nsin(nomega_c tau) }_f \
B_f(n,tau) = { a_nsin(nomega_c tau) + b_ncos(nomega_c tau) }_f.$$
Using the above definitions, we can define a time-shifted trigonometric Fourier series as follows
$$ f(t - tau) = Av_f + sum_{n = 1}^{infty}left[A_f(n,tau) cos(nomega_c t) + B_f(n,tau) sin(nomega_c t)right].$$
This will allow us to add two trigonometric Fourier series, each with their own distinct time-shifts as follows
$$ g(t - tau) = Av_g + sum_{n = 1}^{infty}left[A_g(n,tau) cos(nomega_c t) + B_g(n,tau) sin(nomega_c t)right] \
h(t - lambda) = Av_h + sum_{n = 1}^{infty}left[A_h(n,lambda) cos(nomega_c t) + B_h(n,lambda) sin(nomega_c t)right] $$
$$ f(t) = g(t - tau) + h(t - lambda) $$
We can setup some more definition to make things simpler as follows
begin{align*}
Av_f &= Av_g + Av_h \
A_f(n, tau, lambda) &= { A_g(n, tau) + A_h(n, lambda)} \
B_f(n, tau, lambda) &= { B_g(n, tau) + B_h(n, lambda)}. end{align*}
Then
$$
f(t) = Av_f + sum_{n = 1}^{infty}left[A_f(n, tau, lambda) cos(nomega_c t) + B_f(n, tau, lambda) sin(nomega_c t)right].
$$
edited Jan 17 at 4:34
answered Jan 14 at 21:04
GustavGustav
1469
1469
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
add a comment |
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
$begingroup$
@Xander Thanks for cleaning it up a bit.
$endgroup$
– Gustav
Jan 16 at 0:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2689559%2ftime-shifted-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown