Proof of complex integrals involving trigonometic functions












2












$begingroup$


I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
    $endgroup$
    – GEdgar
    Jan 15 at 1:39










  • $begingroup$
    Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
    $endgroup$
    – Henry Lee
    Jan 15 at 1:40








  • 1




    $begingroup$
    Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
    $endgroup$
    – GEdgar
    Jan 15 at 1:43
















2












$begingroup$


I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
    $endgroup$
    – GEdgar
    Jan 15 at 1:39










  • $begingroup$
    Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
    $endgroup$
    – Henry Lee
    Jan 15 at 1:40








  • 1




    $begingroup$
    Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
    $endgroup$
    – GEdgar
    Jan 15 at 1:43














2












2








2





$begingroup$


I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?










share|cite|improve this question











$endgroup$




I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?







integration complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 1:39







Henry Lee

















asked Jan 15 at 1:37









Henry LeeHenry Lee

2,181319




2,181319












  • $begingroup$
    You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
    $endgroup$
    – GEdgar
    Jan 15 at 1:39










  • $begingroup$
    Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
    $endgroup$
    – Henry Lee
    Jan 15 at 1:40








  • 1




    $begingroup$
    Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
    $endgroup$
    – GEdgar
    Jan 15 at 1:43


















  • $begingroup$
    You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
    $endgroup$
    – GEdgar
    Jan 15 at 1:39










  • $begingroup$
    Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
    $endgroup$
    – Henry Lee
    Jan 15 at 1:40








  • 1




    $begingroup$
    Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
    $endgroup$
    – GEdgar
    Jan 15 at 1:43
















$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39




$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39












$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40






$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40






1




1




$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43




$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43










1 Answer
1






active

oldest

votes


















1












$begingroup$

Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$

Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073982%2fproof-of-complex-integrals-involving-trigonometic-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Recall
    $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
    Hence
    $$begin{align}
    sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
    =&frac{x^{i}-x^{-i}}{2i}\
    end{align}$$

    Similarly:
    $$cos log x=frac{x^i+x^{-i}}2$$
    each of which can be easily integrated giving the desired results.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Recall
      $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
      Hence
      $$begin{align}
      sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
      =&frac{x^{i}-x^{-i}}{2i}\
      end{align}$$

      Similarly:
      $$cos log x=frac{x^i+x^{-i}}2$$
      each of which can be easily integrated giving the desired results.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Recall
        $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
        Hence
        $$begin{align}
        sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
        =&frac{x^{i}-x^{-i}}{2i}\
        end{align}$$

        Similarly:
        $$cos log x=frac{x^i+x^{-i}}2$$
        each of which can be easily integrated giving the desired results.






        share|cite|improve this answer









        $endgroup$



        Recall
        $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
        Hence
        $$begin{align}
        sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
        =&frac{x^{i}-x^{-i}}{2i}\
        end{align}$$

        Similarly:
        $$cos log x=frac{x^i+x^{-i}}2$$
        each of which can be easily integrated giving the desired results.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 15 at 3:15









        clathratusclathratus

        4,9641438




        4,9641438






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073982%2fproof-of-complex-integrals-involving-trigonometic-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅