Proof of complex integrals involving trigonometic functions
$begingroup$
I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?
integration complex-analysis
$endgroup$
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
1
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43
add a comment |
$begingroup$
I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?
integration complex-analysis
$endgroup$
I came across a way of solving the following integrals:
$$I_1=intcosleft[ln xright]dx$$
$$I_2=intsinleft[ln xright]dx$$
firstly:
$$int x^idx=frac{x^{i+1}}{i+1}+C tag{1}$$
and we also know that:
$$int x^idx=int e^{iln(x)}dx=intcosleft[ln xright]+isinleft[ln xright]dxtag{2}$$
Rearranging $(1)$ we get:
$$frac{x^{1+i}}{1+i}=frac{1-i}{2}x^{1+i}=frac{x}{2}left(cosleft[ln xright]+isinleft[ln xright]-icosleft[ln xright]+sinleft[ln xright]right)$$
$$=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+ifrac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}tag{3}$$
and so when we combine $(2)$ and $(3)$ we get:
$$intcosleft[ln xright]dx=frac{xleft(cosleft[ln xright]+sinleft[ln xright]right)}{2}+C$$
$$intsinleft[ln xright]dx=frac{xleft(sinleft[ln xright]-cosleft[ln xright]right)}{2}+C$$
Is this correct? And does anyone have any similar examples of where this method can be used?
integration complex-analysis
integration complex-analysis
edited Jan 15 at 1:39
Henry Lee
asked Jan 15 at 1:37
Henry LeeHenry Lee
2,181319
2,181319
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
1
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43
add a comment |
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
1
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
1
1
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$
Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073982%2fproof-of-complex-integrals-involving-trigonometic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$
Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.
$endgroup$
add a comment |
$begingroup$
Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$
Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.
$endgroup$
add a comment |
$begingroup$
Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$
Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.
$endgroup$
Recall
$$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
Hence
$$begin{align}
sin log x=&frac{e^{ilog x}-e^{-ilog x}}{2i}\
=&frac{x^{i}-x^{-i}}{2i}\
end{align}$$
Similarly:
$$cos log x=frac{x^i+x^{-i}}2$$
each of which can be easily integrated giving the desired results.
answered Jan 15 at 3:15
clathratusclathratus
4,9641438
4,9641438
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073982%2fproof-of-complex-integrals-involving-trigonometic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can check yourself whether attempted anti-derivatives are correct. Differentiate the right-hand-side, and see if the result is the integrand.
$endgroup$
– GEdgar
Jan 15 at 1:39
$begingroup$
Yes when differentiated it gives the desired result, but are there any limitation that I have overlooked, other than the function not being continuous for real
$endgroup$
– Henry Lee
Jan 15 at 1:40
1
$begingroup$
Your integrand must have $x>0$. Then $x^i$ is defined and has the continuous principal value you wrote.
$endgroup$
– GEdgar
Jan 15 at 1:43