Prove that $intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$ converges
$begingroup$
Prove the convergence of
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
First I thought the integral does not converge because
$$intlimits_1^{infty} -frac{1}{x} ,mathrm{d}x le intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
But in this case
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x le intlimits_1^{infty} frac{1}{x^2} , mathrm{d}x$$
it converges concerning the majorant criterion. What's the right way?
calculus real-analysis convergence improper-integrals trigonometric-integrals
$endgroup$
|
show 1 more comment
$begingroup$
Prove the convergence of
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
First I thought the integral does not converge because
$$intlimits_1^{infty} -frac{1}{x} ,mathrm{d}x le intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
But in this case
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x le intlimits_1^{infty} frac{1}{x^2} , mathrm{d}x$$
it converges concerning the majorant criterion. What's the right way?
calculus real-analysis convergence improper-integrals trigonometric-integrals
$endgroup$
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
1
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35
|
show 1 more comment
$begingroup$
Prove the convergence of
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
First I thought the integral does not converge because
$$intlimits_1^{infty} -frac{1}{x} ,mathrm{d}x le intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
But in this case
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x le intlimits_1^{infty} frac{1}{x^2} , mathrm{d}x$$
it converges concerning the majorant criterion. What's the right way?
calculus real-analysis convergence improper-integrals trigonometric-integrals
$endgroup$
Prove the convergence of
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
First I thought the integral does not converge because
$$intlimits_1^{infty} -frac{1}{x} ,mathrm{d}x le intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x$$
But in this case
$$intlimits_1^{infty} frac{cos(x)}{x} , mathrm{d}x le intlimits_1^{infty} frac{1}{x^2} , mathrm{d}x$$
it converges concerning the majorant criterion. What's the right way?
calculus real-analysis convergence improper-integrals trigonometric-integrals
calculus real-analysis convergence improper-integrals trigonometric-integrals
edited Jul 15 '16 at 12:36
Rodrigo de Azevedo
13k41958
13k41958
asked Jul 15 '16 at 12:25
jacmeirdjacmeird
503315
503315
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
1
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35
|
show 1 more comment
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
1
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
1
1
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
You might want to use integration by parts, obtaining for $Mge1$,
$$
int_{1}^M frac{cos x}{x}: dx=left[frac{sin x}{ x}right]_1^M+ int_1^M frac{sin x}{x^2}: dx
$$ letting $M to infty$ gives
$$
int_{1}^infty frac{cos x}{x} :dx=lim_{M to infty}int_1^M frac{cos x}{x} :dx= -sin 1+int_1^infty frac{sin x}{ x^2}: dx
$$then one may conclude by the absolute convergence of the latter integral:
$$
left|int_1^infty frac{sin x}{ x^2}: dxright|<int_1^infty frac{|sin x|}{ x^2}: dx<int_1^infty frac{1}{x^2}: dx<infty.
$$
$endgroup$
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
|
show 1 more comment
$begingroup$
Hint: Awful and tricky but as the problem is near $+infty$, write $$int limits_{frac{pi}{2}}^{Npi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x= sum limits_{k=1}^{N}left(intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}xright)$$ and use the criterion for alternating series with the sequence $$a_k=intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
left|,int_1^inftyfrac{cos(x)}{x},mathrm{d}x,right|
&leleft|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}frac{cos(x)}{x},mathrm{d}x,right|\
&=left|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}cos(x)left(frac1{x}-frac1{2kpi}right),mathrm{d}x,right|\
&lelog(pi)+sum_{k=1}^infty2pileft(frac1{(2k-1)pi}-frac1{2kpi}right)\[6pt]
&=log(4pi)
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1860267%2fprove-that-int-limits-1-infty-frac-cosxx-mathrmdx-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You might want to use integration by parts, obtaining for $Mge1$,
$$
int_{1}^M frac{cos x}{x}: dx=left[frac{sin x}{ x}right]_1^M+ int_1^M frac{sin x}{x^2}: dx
$$ letting $M to infty$ gives
$$
int_{1}^infty frac{cos x}{x} :dx=lim_{M to infty}int_1^M frac{cos x}{x} :dx= -sin 1+int_1^infty frac{sin x}{ x^2}: dx
$$then one may conclude by the absolute convergence of the latter integral:
$$
left|int_1^infty frac{sin x}{ x^2}: dxright|<int_1^infty frac{|sin x|}{ x^2}: dx<int_1^infty frac{1}{x^2}: dx<infty.
$$
$endgroup$
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
|
show 1 more comment
$begingroup$
You might want to use integration by parts, obtaining for $Mge1$,
$$
int_{1}^M frac{cos x}{x}: dx=left[frac{sin x}{ x}right]_1^M+ int_1^M frac{sin x}{x^2}: dx
$$ letting $M to infty$ gives
$$
int_{1}^infty frac{cos x}{x} :dx=lim_{M to infty}int_1^M frac{cos x}{x} :dx= -sin 1+int_1^infty frac{sin x}{ x^2}: dx
$$then one may conclude by the absolute convergence of the latter integral:
$$
left|int_1^infty frac{sin x}{ x^2}: dxright|<int_1^infty frac{|sin x|}{ x^2}: dx<int_1^infty frac{1}{x^2}: dx<infty.
$$
$endgroup$
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
|
show 1 more comment
$begingroup$
You might want to use integration by parts, obtaining for $Mge1$,
$$
int_{1}^M frac{cos x}{x}: dx=left[frac{sin x}{ x}right]_1^M+ int_1^M frac{sin x}{x^2}: dx
$$ letting $M to infty$ gives
$$
int_{1}^infty frac{cos x}{x} :dx=lim_{M to infty}int_1^M frac{cos x}{x} :dx= -sin 1+int_1^infty frac{sin x}{ x^2}: dx
$$then one may conclude by the absolute convergence of the latter integral:
$$
left|int_1^infty frac{sin x}{ x^2}: dxright|<int_1^infty frac{|sin x|}{ x^2}: dx<int_1^infty frac{1}{x^2}: dx<infty.
$$
$endgroup$
You might want to use integration by parts, obtaining for $Mge1$,
$$
int_{1}^M frac{cos x}{x}: dx=left[frac{sin x}{ x}right]_1^M+ int_1^M frac{sin x}{x^2}: dx
$$ letting $M to infty$ gives
$$
int_{1}^infty frac{cos x}{x} :dx=lim_{M to infty}int_1^M frac{cos x}{x} :dx= -sin 1+int_1^infty frac{sin x}{ x^2}: dx
$$then one may conclude by the absolute convergence of the latter integral:
$$
left|int_1^infty frac{sin x}{ x^2}: dxright|<int_1^infty frac{|sin x|}{ x^2}: dx<int_1^infty frac{1}{x^2}: dx<infty.
$$
edited Jan 11 at 4:38
answered Jul 15 '16 at 12:36
Olivier OloaOlivier Oloa
108k17177294
108k17177294
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
|
show 1 more comment
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
Is it $left|lim_{M to infty}int_{1}^M frac{cos x}{x} dxright|$ ?
$endgroup$
– Mc Cheng
Jul 15 '16 at 12:43
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
$begingroup$
@McCheng Edited. Thank you very much!
$endgroup$
– Olivier Oloa
Jul 15 '16 at 12:44
1
1
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
You should leave off those absolute values in your last line.
$endgroup$
– zhw.
Jul 15 '16 at 15:56
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
@zhw. You are right, done.
$endgroup$
– Olivier Oloa
Jan 9 at 8:24
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
$begingroup$
I think you lost a minus sign in front of $frac{sin 1}{1}$, right?
$endgroup$
– Ixion
Jan 9 at 10:48
|
show 1 more comment
$begingroup$
Hint: Awful and tricky but as the problem is near $+infty$, write $$int limits_{frac{pi}{2}}^{Npi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x= sum limits_{k=1}^{N}left(intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}xright)$$ and use the criterion for alternating series with the sequence $$a_k=intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
Hint: Awful and tricky but as the problem is near $+infty$, write $$int limits_{frac{pi}{2}}^{Npi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x= sum limits_{k=1}^{N}left(intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}xright)$$ and use the criterion for alternating series with the sequence $$a_k=intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x$$
$endgroup$
add a comment |
$begingroup$
Hint: Awful and tricky but as the problem is near $+infty$, write $$int limits_{frac{pi}{2}}^{Npi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x= sum limits_{k=1}^{N}left(intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}xright)$$ and use the criterion for alternating series with the sequence $$a_k=intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x$$
$endgroup$
Hint: Awful and tricky but as the problem is near $+infty$, write $$int limits_{frac{pi}{2}}^{Npi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x= sum limits_{k=1}^{N}left(intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}xright)$$ and use the criterion for alternating series with the sequence $$a_k=intlimits_{kpi-frac{pi}{2}}^{kpi+frac{pi}{2}}frac{cos(x)}{x}mathrm{d}x$$
edited Jan 9 at 9:01
Lorenzo B.
1,8402520
1,8402520
answered Jan 6 at 21:23
MamanMaman
1,194722
1,194722
add a comment |
add a comment |
$begingroup$
$$
begin{align}
left|,int_1^inftyfrac{cos(x)}{x},mathrm{d}x,right|
&leleft|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}frac{cos(x)}{x},mathrm{d}x,right|\
&=left|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}cos(x)left(frac1{x}-frac1{2kpi}right),mathrm{d}x,right|\
&lelog(pi)+sum_{k=1}^infty2pileft(frac1{(2k-1)pi}-frac1{2kpi}right)\[6pt]
&=log(4pi)
end{align}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
left|,int_1^inftyfrac{cos(x)}{x},mathrm{d}x,right|
&leleft|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}frac{cos(x)}{x},mathrm{d}x,right|\
&=left|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}cos(x)left(frac1{x}-frac1{2kpi}right),mathrm{d}x,right|\
&lelog(pi)+sum_{k=1}^infty2pileft(frac1{(2k-1)pi}-frac1{2kpi}right)\[6pt]
&=log(4pi)
end{align}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
left|,int_1^inftyfrac{cos(x)}{x},mathrm{d}x,right|
&leleft|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}frac{cos(x)}{x},mathrm{d}x,right|\
&=left|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}cos(x)left(frac1{x}-frac1{2kpi}right),mathrm{d}x,right|\
&lelog(pi)+sum_{k=1}^infty2pileft(frac1{(2k-1)pi}-frac1{2kpi}right)\[6pt]
&=log(4pi)
end{align}
$$
$endgroup$
$$
begin{align}
left|,int_1^inftyfrac{cos(x)}{x},mathrm{d}x,right|
&leleft|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}frac{cos(x)}{x},mathrm{d}x,right|\
&=left|,int_1^pifrac{cos(x)}{x},mathrm{d}x,right|+sum_{k=1}^inftyleft|,int_{(2k-1)pi}^{(2k+1)pi}cos(x)left(frac1{x}-frac1{2kpi}right),mathrm{d}x,right|\
&lelog(pi)+sum_{k=1}^infty2pileft(frac1{(2k-1)pi}-frac1{2kpi}right)\[6pt]
&=log(4pi)
end{align}
$$
answered Jan 9 at 10:59
robjohn♦robjohn
268k27308632
268k27308632
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1860267%2fprove-that-int-limits-1-infty-frac-cosxx-mathrmdx-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
en.wikipedia.org/wiki/Dirichlet%27s_test
$endgroup$
– Jack D'Aurizio
Jul 15 '16 at 12:26
1
$begingroup$
If you want to use the (direct) comparison test(s), be sure to check if you can apply the test (more specifically, look for conditions on the sign of the functions).
$endgroup$
– StackTD
Jul 15 '16 at 12:28
$begingroup$
$f,g:[0,infty]to mathbb{R}$, is this the problem?
$endgroup$
– jacmeird
Jul 15 '16 at 12:32
$begingroup$
@jacmeird The problem is that $frac{cos x}{x}leq frac{1}{x^2}$ is not true! Take any $x>1$ such that $cos x = 1$ and you will see.
$endgroup$
– 5xum
Jul 15 '16 at 12:33
$begingroup$
@5xum Ouch, of course you're right. If I take $frac{cos(x)}{x} le frac{1}{x}$, there is the same problem.
$endgroup$
– jacmeird
Jul 15 '16 at 12:35