Approximation for confluent hypergeometric function 1F1(-aX,-X,-1)
$begingroup$
This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
$$
M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
$$
I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.
Numerically, I find that:
$$
M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
$$
is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.
power-series approximation hypergeometric-function
$endgroup$
add a comment |
$begingroup$
This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
$$
M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
$$
I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.
Numerically, I find that:
$$
M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
$$
is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.
power-series approximation hypergeometric-function
$endgroup$
add a comment |
$begingroup$
This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
$$
M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
$$
I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.
Numerically, I find that:
$$
M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
$$
is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.
power-series approximation hypergeometric-function
$endgroup$
This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
$$
M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
$$
I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.
Numerically, I find that:
$$
M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
$$
is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.
power-series approximation hypergeometric-function
power-series approximation hypergeometric-function
edited May 22 '17 at 11:10
Bilal Khan
asked May 22 '17 at 10:52
Bilal KhanBilal Khan
215
215
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since
$${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
\sum_{k=0}^{infty}
frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
frac{(-1)^k}{k!}$$
and
$$lim_{X to infty}
frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
alpha^k,$$
taking the element-wise limit gives
$$lim_{X to infty}
{_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2291818%2fapproximation-for-confluent-hypergeometric-function-1f1-ax-x-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since
$${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
\sum_{k=0}^{infty}
frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
frac{(-1)^k}{k!}$$
and
$$lim_{X to infty}
frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
alpha^k,$$
taking the element-wise limit gives
$$lim_{X to infty}
{_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$
$endgroup$
add a comment |
$begingroup$
Since
$${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
\sum_{k=0}^{infty}
frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
frac{(-1)^k}{k!}$$
and
$$lim_{X to infty}
frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
alpha^k,$$
taking the element-wise limit gives
$$lim_{X to infty}
{_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$
$endgroup$
add a comment |
$begingroup$
Since
$${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
\sum_{k=0}^{infty}
frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
frac{(-1)^k}{k!}$$
and
$$lim_{X to infty}
frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
alpha^k,$$
taking the element-wise limit gives
$$lim_{X to infty}
{_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$
$endgroup$
Since
$${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
\sum_{k=0}^{infty}
frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
frac{(-1)^k}{k!}$$
and
$$lim_{X to infty}
frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
alpha^k,$$
taking the element-wise limit gives
$$lim_{X to infty}
{_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$
edited Jan 7 at 2:58
answered Jan 20 '18 at 15:16
MaximMaxim
5,5981219
5,5981219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2291818%2fapproximation-for-confluent-hypergeometric-function-1f1-ax-x-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown