laplace transform of impulse function
$begingroup$
The laplace tranform of the following function impulse function is
$$int_{0}^{infty}delta(t).e^{-st},dt$$
$$=int_{0}^{infty}delta(t),dt=1$$
(area under unit impulse is always 1)
$$=1.int_{0}^{infty}e^{-st},dt$$
$$=1.frac{1}{S}$$
$$=frac{1}{S}$$
but the correct answer is 1, I don't know why.
calculus
$endgroup$
add a comment |
$begingroup$
The laplace tranform of the following function impulse function is
$$int_{0}^{infty}delta(t).e^{-st},dt$$
$$=int_{0}^{infty}delta(t),dt=1$$
(area under unit impulse is always 1)
$$=1.int_{0}^{infty}e^{-st},dt$$
$$=1.frac{1}{S}$$
$$=frac{1}{S}$$
but the correct answer is 1, I don't know why.
calculus
$endgroup$
2
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06
add a comment |
$begingroup$
The laplace tranform of the following function impulse function is
$$int_{0}^{infty}delta(t).e^{-st},dt$$
$$=int_{0}^{infty}delta(t),dt=1$$
(area under unit impulse is always 1)
$$=1.int_{0}^{infty}e^{-st},dt$$
$$=1.frac{1}{S}$$
$$=frac{1}{S}$$
but the correct answer is 1, I don't know why.
calculus
$endgroup$
The laplace tranform of the following function impulse function is
$$int_{0}^{infty}delta(t).e^{-st},dt$$
$$=int_{0}^{infty}delta(t),dt=1$$
(area under unit impulse is always 1)
$$=1.int_{0}^{infty}e^{-st},dt$$
$$=1.frac{1}{S}$$
$$=frac{1}{S}$$
but the correct answer is 1, I don't know why.
calculus
calculus
asked Aug 12 '17 at 6:44
TapasXTapasX
192
192
2
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06
add a comment |
2
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06
2
2
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint. Note that by the sampling property of the delta function (which is actually a distribution)
$$int_{-infty}^{+infty}f(t)delta(t-t_0)dt=f(t_0).$$
$endgroup$
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2391019%2flaplace-transform-of-impulse-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. Note that by the sampling property of the delta function (which is actually a distribution)
$$int_{-infty}^{+infty}f(t)delta(t-t_0)dt=f(t_0).$$
$endgroup$
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
add a comment |
$begingroup$
Hint. Note that by the sampling property of the delta function (which is actually a distribution)
$$int_{-infty}^{+infty}f(t)delta(t-t_0)dt=f(t_0).$$
$endgroup$
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
add a comment |
$begingroup$
Hint. Note that by the sampling property of the delta function (which is actually a distribution)
$$int_{-infty}^{+infty}f(t)delta(t-t_0)dt=f(t_0).$$
$endgroup$
Hint. Note that by the sampling property of the delta function (which is actually a distribution)
$$int_{-infty}^{+infty}f(t)delta(t-t_0)dt=f(t_0).$$
edited Aug 12 '17 at 7:12
answered Aug 12 '17 at 7:06
Robert ZRobert Z
96.3k1065136
96.3k1065136
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
add a comment |
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
@reuns Yes, it is better to recall that.
$endgroup$
– Robert Z
Aug 12 '17 at 7:13
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
$begingroup$
To make it clear, you can define it as $int_{-infty}^infty delta(t) f(t)dt overset{def}= lim_{epsilon to 0^+} int_{-infty}^infty frac{1_{|t| < epsilon}}{2 epsilon} f(t)dt$
$endgroup$
– reuns
Aug 12 '17 at 7:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2391019%2flaplace-transform-of-impulse-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You can't integrate a factor only and take it out from the integral.
$endgroup$
– Sergio Enrique Yarza Acuña
Aug 12 '17 at 6:46
$begingroup$
Also $int_0^infty delta(t) e^{-st}dt$ is not a very good notation. You should say instead that $int_{-infty}^infty delta(t) e^{-st}dt = e^{-st}|_{s=0} = 1$
$endgroup$
– reuns
Aug 12 '17 at 7:06