Determine whether the sequence converges or diverges.












2












$begingroup$


Let : $\a_n=frac{(-pi)^n}{4^n}$



What my teacher told me :



$a_1=frac{-pi}{4} approx -0.785\
a_2=frac{pi^2}{16} approx 0.617\
a_3=frac{-pi^3}{64} approx -0.484\
a_4=frac{pi^4}{256} approx 0.380\$



So the sequence diverges. But I'm not really sure about the answer.



Here is my teacher's work:



Here's my teacher's work










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Clclstdnt: this is a sequence, not a series. No alternating series test.
    $endgroup$
    – user587192
    Jan 15 at 3:50








  • 1




    $begingroup$
    One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
    $endgroup$
    – user587192
    Jan 15 at 3:52












  • $begingroup$
    @user587192 I just attached her work
    $endgroup$
    – airlangga
    Jan 15 at 4:22










  • $begingroup$
    @airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
    $endgroup$
    – user587192
    Jan 15 at 4:26


















2












$begingroup$


Let : $\a_n=frac{(-pi)^n}{4^n}$



What my teacher told me :



$a_1=frac{-pi}{4} approx -0.785\
a_2=frac{pi^2}{16} approx 0.617\
a_3=frac{-pi^3}{64} approx -0.484\
a_4=frac{pi^4}{256} approx 0.380\$



So the sequence diverges. But I'm not really sure about the answer.



Here is my teacher's work:



Here's my teacher's work










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Clclstdnt: this is a sequence, not a series. No alternating series test.
    $endgroup$
    – user587192
    Jan 15 at 3:50








  • 1




    $begingroup$
    One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
    $endgroup$
    – user587192
    Jan 15 at 3:52












  • $begingroup$
    @user587192 I just attached her work
    $endgroup$
    – airlangga
    Jan 15 at 4:22










  • $begingroup$
    @airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
    $endgroup$
    – user587192
    Jan 15 at 4:26
















2












2








2





$begingroup$


Let : $\a_n=frac{(-pi)^n}{4^n}$



What my teacher told me :



$a_1=frac{-pi}{4} approx -0.785\
a_2=frac{pi^2}{16} approx 0.617\
a_3=frac{-pi^3}{64} approx -0.484\
a_4=frac{pi^4}{256} approx 0.380\$



So the sequence diverges. But I'm not really sure about the answer.



Here is my teacher's work:



Here's my teacher's work










share|cite|improve this question











$endgroup$




Let : $\a_n=frac{(-pi)^n}{4^n}$



What my teacher told me :



$a_1=frac{-pi}{4} approx -0.785\
a_2=frac{pi^2}{16} approx 0.617\
a_3=frac{-pi^3}{64} approx -0.484\
a_4=frac{pi^4}{256} approx 0.380\$



So the sequence diverges. But I'm not really sure about the answer.



Here is my teacher's work:



Here's my teacher's work







calculus sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 5:06









user587192

2,064315




2,064315










asked Jan 15 at 3:42









airlanggaairlangga

604




604












  • $begingroup$
    @Clclstdnt: this is a sequence, not a series. No alternating series test.
    $endgroup$
    – user587192
    Jan 15 at 3:50








  • 1




    $begingroup$
    One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
    $endgroup$
    – user587192
    Jan 15 at 3:52












  • $begingroup$
    @user587192 I just attached her work
    $endgroup$
    – airlangga
    Jan 15 at 4:22










  • $begingroup$
    @airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
    $endgroup$
    – user587192
    Jan 15 at 4:26




















  • $begingroup$
    @Clclstdnt: this is a sequence, not a series. No alternating series test.
    $endgroup$
    – user587192
    Jan 15 at 3:50








  • 1




    $begingroup$
    One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
    $endgroup$
    – user587192
    Jan 15 at 3:52












  • $begingroup$
    @user587192 I just attached her work
    $endgroup$
    – airlangga
    Jan 15 at 4:22










  • $begingroup$
    @airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
    $endgroup$
    – user587192
    Jan 15 at 4:26


















$begingroup$
@Clclstdnt: this is a sequence, not a series. No alternating series test.
$endgroup$
– user587192
Jan 15 at 3:50






$begingroup$
@Clclstdnt: this is a sequence, not a series. No alternating series test.
$endgroup$
– user587192
Jan 15 at 3:50






1




1




$begingroup$
One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
$endgroup$
– user587192
Jan 15 at 3:52






$begingroup$
One would not simply list four terms and claim the sequence is divergent or convergent. You may have probably taken a wrong note on what your teacher said.
$endgroup$
– user587192
Jan 15 at 3:52














$begingroup$
@user587192 I just attached her work
$endgroup$
– airlangga
Jan 15 at 4:22




$begingroup$
@user587192 I just attached her work
$endgroup$
– airlangga
Jan 15 at 4:22












$begingroup$
@airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
$endgroup$
– user587192
Jan 15 at 4:26






$begingroup$
@airlangga: Your teacher's point is that $frac{pi}{4}<1$. And the sequence converges.
$endgroup$
– user587192
Jan 15 at 4:26












2 Answers
2






active

oldest

votes


















3












$begingroup$

By triangle inequality one has that if $lim_{n to infty} |a_n| = 0$, then $lim_{n to infty} a_n = 0$. Thus, if $a_n = frac{(- pi )^n }{4^n } = frac{ (-1)^n pi^n }{4^n} $. Observe that



$$ left| frac{ (-1)^n pi^n }{4^n} right| = frac{ pi^n }{4^n} = left( frac{ pi }{4} right)^n to 0 $$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Well: $$|t|<1to lim_{ntoinfty}t^n=0$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074045%2fdetermine-whether-the-sequence-converges-or-diverges%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      By triangle inequality one has that if $lim_{n to infty} |a_n| = 0$, then $lim_{n to infty} a_n = 0$. Thus, if $a_n = frac{(- pi )^n }{4^n } = frac{ (-1)^n pi^n }{4^n} $. Observe that



      $$ left| frac{ (-1)^n pi^n }{4^n} right| = frac{ pi^n }{4^n} = left( frac{ pi }{4} right)^n to 0 $$






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        By triangle inequality one has that if $lim_{n to infty} |a_n| = 0$, then $lim_{n to infty} a_n = 0$. Thus, if $a_n = frac{(- pi )^n }{4^n } = frac{ (-1)^n pi^n }{4^n} $. Observe that



        $$ left| frac{ (-1)^n pi^n }{4^n} right| = frac{ pi^n }{4^n} = left( frac{ pi }{4} right)^n to 0 $$






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          By triangle inequality one has that if $lim_{n to infty} |a_n| = 0$, then $lim_{n to infty} a_n = 0$. Thus, if $a_n = frac{(- pi )^n }{4^n } = frac{ (-1)^n pi^n }{4^n} $. Observe that



          $$ left| frac{ (-1)^n pi^n }{4^n} right| = frac{ pi^n }{4^n} = left( frac{ pi }{4} right)^n to 0 $$






          share|cite|improve this answer









          $endgroup$



          By triangle inequality one has that if $lim_{n to infty} |a_n| = 0$, then $lim_{n to infty} a_n = 0$. Thus, if $a_n = frac{(- pi )^n }{4^n } = frac{ (-1)^n pi^n }{4^n} $. Observe that



          $$ left| frac{ (-1)^n pi^n }{4^n} right| = frac{ pi^n }{4^n} = left( frac{ pi }{4} right)^n to 0 $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 15 at 3:48









          Jimmy SabaterJimmy Sabater

          2,631321




          2,631321























              3












              $begingroup$

              Well: $$|t|<1to lim_{ntoinfty}t^n=0$$






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Well: $$|t|<1to lim_{ntoinfty}t^n=0$$






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Well: $$|t|<1to lim_{ntoinfty}t^n=0$$






                  share|cite|improve this answer









                  $endgroup$



                  Well: $$|t|<1to lim_{ntoinfty}t^n=0$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 15 at 4:04









                  Rhys HughesRhys Hughes

                  5,9981529




                  5,9981529






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074045%2fdetermine-whether-the-sequence-converges-or-diverges%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅