Forward and Backward Projections












0












$begingroup$


I have the transform functions (forward and backward projections) such as:



$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$



What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.



I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.



This problem occurs during study of the Radon transform.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
    $endgroup$
    – Marcus Müller
    Jan 6 at 19:41
















0












$begingroup$


I have the transform functions (forward and backward projections) such as:



$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$



What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.



I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.



This problem occurs during study of the Radon transform.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
    $endgroup$
    – Marcus Müller
    Jan 6 at 19:41














0












0








0





$begingroup$


I have the transform functions (forward and backward projections) such as:



$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$



What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.



I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.



This problem occurs during study of the Radon transform.










share|cite|improve this question











$endgroup$




I have the transform functions (forward and backward projections) such as:



$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$



What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.



I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.



This problem occurs during study of the Radon transform.







fourier-analysis linear-transformations transformation projection






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 19:52









Marcus Müller

18418




18418










asked Jan 6 at 13:51









GuernicaGuernica

63




63












  • $begingroup$
    I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
    $endgroup$
    – Marcus Müller
    Jan 6 at 19:41


















  • $begingroup$
    I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
    $endgroup$
    – Marcus Müller
    Jan 6 at 19:41
















$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41




$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let's –boringly– just insert the functional in question and see where it takes us:



$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$



begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}



Thus, in total:



$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063879%2fforward-and-backward-projections%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let's –boringly– just insert the functional in question and see where it takes us:



    $$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
    $$



    begin{align}
    FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
    &=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
    &= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
    &underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
    &= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
    &= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
    &text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
    &= #left{zBig| frac rz = - frac zrright}\
    &= #left{z| r^2 = - z^2right}\
    &= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
    &underline{text{2. case: $r=0$}}\
    (*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
    &= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
    &=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
    &underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
    (*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
    &= #left{z|z=0 wedge r = 0right}\
    &= 0
    end{align}



    Thus, in total:



    $$FP{delta}(r,theta) = begin{cases}
    1 &text{when} &r=0 \
    0 &text{else.}
    end{cases}$$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Let's –boringly– just insert the functional in question and see where it takes us:



      $$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
      $$



      begin{align}
      FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
      &=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
      &= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
      &underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
      &= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
      &= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
      &text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
      &= #left{zBig| frac rz = - frac zrright}\
      &= #left{z| r^2 = - z^2right}\
      &= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
      &underline{text{2. case: $r=0$}}\
      (*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
      &= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
      &=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
      &underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
      (*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
      &= #left{z|z=0 wedge r = 0right}\
      &= 0
      end{align}



      Thus, in total:



      $$FP{delta}(r,theta) = begin{cases}
      1 &text{when} &r=0 \
      0 &text{else.}
      end{cases}$$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Let's –boringly– just insert the functional in question and see where it takes us:



        $$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
        $$



        begin{align}
        FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
        &=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
        &= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
        &underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
        &= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
        &= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
        &text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
        &= #left{zBig| frac rz = - frac zrright}\
        &= #left{z| r^2 = - z^2right}\
        &= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
        &underline{text{2. case: $r=0$}}\
        (*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
        &= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
        &=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
        &underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
        (*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
        &= #left{z|z=0 wedge r = 0right}\
        &= 0
        end{align}



        Thus, in total:



        $$FP{delta}(r,theta) = begin{cases}
        1 &text{when} &r=0 \
        0 &text{else.}
        end{cases}$$






        share|cite|improve this answer











        $endgroup$



        Let's –boringly– just insert the functional in question and see where it takes us:



        $$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
        $$



        begin{align}
        FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
        &=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
        &= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
        &underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
        &= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
        &= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
        &text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
        &= #left{zBig| frac rz = - frac zrright}\
        &= #left{z| r^2 = - z^2right}\
        &= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
        &underline{text{2. case: $r=0$}}\
        (*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
        &= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
        &=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
        &underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
        (*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
        &= #left{z|z=0 wedge r = 0right}\
        &= 0
        end{align}



        Thus, in total:



        $$FP{delta}(r,theta) = begin{cases}
        1 &text{when} &r=0 \
        0 &text{else.}
        end{cases}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 6 at 19:50

























        answered Jan 6 at 19:41









        Marcus MüllerMarcus Müller

        18418




        18418






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063879%2fforward-and-backward-projections%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅