Forward and Backward Projections
$begingroup$
I have the transform functions (forward and backward projections) such as:
$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$
What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.
I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.
This problem occurs during study of the Radon transform.
fourier-analysis linear-transformations transformation projection
$endgroup$
add a comment |
$begingroup$
I have the transform functions (forward and backward projections) such as:
$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$
What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.
I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.
This problem occurs during study of the Radon transform.
fourier-analysis linear-transformations transformation projection
$endgroup$
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41
add a comment |
$begingroup$
I have the transform functions (forward and backward projections) such as:
$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$
What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.
I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.
This problem occurs during study of the Radon transform.
fourier-analysis linear-transformations transformation projection
$endgroup$
I have the transform functions (forward and backward projections) such as:
$$FP{f(x,y)} = int_{-infty}^{infty}f(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz$$
$$BP{g_{theta}(r)} = int_{0}^{pi}g_{theta}(xcos(theta) + ysin(theta))dtheta$$
What i want to solve is that first forward projection, which is: $FP{delta(x,y)} = ?$, then i want to solve the backward projection of the result, which actually is: $BP{FP{delta(x,y)}}=?$.
I know that the answers must be $BP{FP{delta(x,y)}}= frac{1}{sqrt{x^2 + y^2}}$.
This problem occurs during study of the Radon transform.
fourier-analysis linear-transformations transformation projection
fourier-analysis linear-transformations transformation projection
edited Jan 6 at 19:52
Marcus Müller
18418
18418
asked Jan 6 at 13:51
GuernicaGuernica
63
63
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41
add a comment |
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let's –boringly– just insert the functional in question and see where it takes us:
$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$
begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}
Thus, in total:
$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063879%2fforward-and-backward-projections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's –boringly– just insert the functional in question and see where it takes us:
$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$
begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}
Thus, in total:
$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$
$endgroup$
add a comment |
$begingroup$
Let's –boringly– just insert the functional in question and see where it takes us:
$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$
begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}
Thus, in total:
$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$
$endgroup$
add a comment |
$begingroup$
Let's –boringly– just insert the functional in question and see where it takes us:
$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$
begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}
Thus, in total:
$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$
$endgroup$
Let's –boringly– just insert the functional in question and see where it takes us:
$$newcommand{FP}[1]{mathrm{FP}{#1}(r,theta)}
$$
begin{align}
FP{delta(x,y)} &= int_{-infty}^{infty}delta(rcos(theta) - zsin(theta), rsin(theta) + zcos(theta))dz\
&=#left{z|rcos(theta) - zsin(theta) = 0 wedge rsin(theta) + zcos(theta)=0right}\
&= #left{z|rcos(theta) = zsin(theta) wedge rsin(theta) = - zcos(theta)right}tag{*}\[2em]
&underline{text{1. case: $costhetane0,,rne0,,ninmathbb Z$}}\
&= #left{z| r= ztan(theta) wedge rtan(theta) = - zright}\
&= #left{zBig| frac rz=tan(theta) wedge tan(theta) = - frac zrright}\
&text{$tantheta$ takes any arbitrary but fixed value $inmathbb R$:}\
&= #left{zBig| frac rz = - frac zrright}\
&= #left{z| r^2 = - z^2right}\
&= 0 text{ (because $r^2>0ge-z^2$)}\[2em]
&underline{text{2. case: $r=0$}}\
(*) &= #left{z| 0 = zsin(theta) wedge 0 = - zcos(theta)right}\
&= #left{z|0 = zsin(theta) wedge 0 = zcos(theta)right}\
&=1 text{ (namely, $z=0$, since $sinthetanecostheta$)}\[2em]
&underline{text{3. case: $costheta=0,,rne0,,ninmathbb Z$}}\
(*) &= #left{z| r0 = z1 wedge r1 = - z0right}\
&= #left{z|z=0 wedge r = 0right}\
&= 0
end{align}
Thus, in total:
$$FP{delta}(r,theta) = begin{cases}
1 &text{when} &r=0 \
0 &text{else.}
end{cases}$$
edited Jan 6 at 19:50
answered Jan 6 at 19:41
Marcus MüllerMarcus Müller
18418
18418
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063879%2fforward-and-backward-projections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I didn't like that you cross-posted here and then deleted your question including my answer over at DSP.SE without any warning :(
$endgroup$
– Marcus Müller
Jan 6 at 19:41