Adjoint Operator $g=ff^{*}+f^{*}f$
$begingroup$
Let V be a finite Vector Space over $mathbb{R}$. Let $phi$ be a inner product positive-definite. Let $f$ be an endomorphism of V we define $f^{*}$ as its adjoint.
Now we define $g=ff^{*}+f^{*}f$.
Show that $ker g= ker f cap kerf^{*}$
$supseteq$) Let $v in ker f cap kerf^{*}$, $g(v)=ff^{*}(v)+f^{*}f(v)=0+0=0$.
Now I'm stuck with the other inclusion, any hint?
Here what I've tried so far, it might be wrong:
Let $v in ker g$ it means that $ff^{*}(v)=-f^{*}f(v)$ then:
$phi(g(v),g(v))=0 implies phi(ff^{*}(v)+f^{*}f(v),ff^{*}(v)+f^{*}f(v))=0 implies phi(ff^{*}(v),ff^{*}(v))+2phi(ff^{*}(v),f^{*}f(v))+phi(f^{*}f(v),f^{*}f(v)) $ Using the aforementioned relation I get: $phi(ff^{*}(v),ff^{*}(v))+phi(f^{*}f(v),f^{*}f(v))-2phi(ff^{*}(v),ff^{*}(v))=0 implies phi(f^{*}f(v),f^{*}f(v))-phi(ff^{*}(v),ff^{*}(v))=0 $ I feel like i should use the properties of the adjoint "erasing" it in the inner product but i could not work out the right proof.
Thanks in advance
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let V be a finite Vector Space over $mathbb{R}$. Let $phi$ be a inner product positive-definite. Let $f$ be an endomorphism of V we define $f^{*}$ as its adjoint.
Now we define $g=ff^{*}+f^{*}f$.
Show that $ker g= ker f cap kerf^{*}$
$supseteq$) Let $v in ker f cap kerf^{*}$, $g(v)=ff^{*}(v)+f^{*}f(v)=0+0=0$.
Now I'm stuck with the other inclusion, any hint?
Here what I've tried so far, it might be wrong:
Let $v in ker g$ it means that $ff^{*}(v)=-f^{*}f(v)$ then:
$phi(g(v),g(v))=0 implies phi(ff^{*}(v)+f^{*}f(v),ff^{*}(v)+f^{*}f(v))=0 implies phi(ff^{*}(v),ff^{*}(v))+2phi(ff^{*}(v),f^{*}f(v))+phi(f^{*}f(v),f^{*}f(v)) $ Using the aforementioned relation I get: $phi(ff^{*}(v),ff^{*}(v))+phi(f^{*}f(v),f^{*}f(v))-2phi(ff^{*}(v),ff^{*}(v))=0 implies phi(f^{*}f(v),f^{*}f(v))-phi(ff^{*}(v),ff^{*}(v))=0 $ I feel like i should use the properties of the adjoint "erasing" it in the inner product but i could not work out the right proof.
Thanks in advance
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let V be a finite Vector Space over $mathbb{R}$. Let $phi$ be a inner product positive-definite. Let $f$ be an endomorphism of V we define $f^{*}$ as its adjoint.
Now we define $g=ff^{*}+f^{*}f$.
Show that $ker g= ker f cap kerf^{*}$
$supseteq$) Let $v in ker f cap kerf^{*}$, $g(v)=ff^{*}(v)+f^{*}f(v)=0+0=0$.
Now I'm stuck with the other inclusion, any hint?
Here what I've tried so far, it might be wrong:
Let $v in ker g$ it means that $ff^{*}(v)=-f^{*}f(v)$ then:
$phi(g(v),g(v))=0 implies phi(ff^{*}(v)+f^{*}f(v),ff^{*}(v)+f^{*}f(v))=0 implies phi(ff^{*}(v),ff^{*}(v))+2phi(ff^{*}(v),f^{*}f(v))+phi(f^{*}f(v),f^{*}f(v)) $ Using the aforementioned relation I get: $phi(ff^{*}(v),ff^{*}(v))+phi(f^{*}f(v),f^{*}f(v))-2phi(ff^{*}(v),ff^{*}(v))=0 implies phi(f^{*}f(v),f^{*}f(v))-phi(ff^{*}(v),ff^{*}(v))=0 $ I feel like i should use the properties of the adjoint "erasing" it in the inner product but i could not work out the right proof.
Thanks in advance
linear-algebra
$endgroup$
Let V be a finite Vector Space over $mathbb{R}$. Let $phi$ be a inner product positive-definite. Let $f$ be an endomorphism of V we define $f^{*}$ as its adjoint.
Now we define $g=ff^{*}+f^{*}f$.
Show that $ker g= ker f cap kerf^{*}$
$supseteq$) Let $v in ker f cap kerf^{*}$, $g(v)=ff^{*}(v)+f^{*}f(v)=0+0=0$.
Now I'm stuck with the other inclusion, any hint?
Here what I've tried so far, it might be wrong:
Let $v in ker g$ it means that $ff^{*}(v)=-f^{*}f(v)$ then:
$phi(g(v),g(v))=0 implies phi(ff^{*}(v)+f^{*}f(v),ff^{*}(v)+f^{*}f(v))=0 implies phi(ff^{*}(v),ff^{*}(v))+2phi(ff^{*}(v),f^{*}f(v))+phi(f^{*}f(v),f^{*}f(v)) $ Using the aforementioned relation I get: $phi(ff^{*}(v),ff^{*}(v))+phi(f^{*}f(v),f^{*}f(v))-2phi(ff^{*}(v),ff^{*}(v))=0 implies phi(f^{*}f(v),f^{*}f(v))-phi(ff^{*}(v),ff^{*}(v))=0 $ I feel like i should use the properties of the adjoint "erasing" it in the inner product but i could not work out the right proof.
Thanks in advance
linear-algebra
linear-algebra
asked Jan 6 at 12:43
SMCSMC
6010
6010
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063813%2fadjoint-operator-g-ffff%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063813%2fadjoint-operator-g-ffff%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown