Why is sinh called “sinus hyperbolicus” despite being just a regular e function?












5












$begingroup$


What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.



The only similarity I can find is that their exponential representation looks similar.



$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$



$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Also note the relation $$ isin(x) = sinh(ix). $$
    $endgroup$
    – MisterRiemann
    Jan 16 at 16:39








  • 2




    $begingroup$
    See Hyperbolic function.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:43






  • 2




    $begingroup$
    See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:54






  • 1




    $begingroup$
    Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
    $endgroup$
    – Lubin
    Jan 16 at 20:22












  • $begingroup$
    See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
    $endgroup$
    – Blue
    Jan 16 at 23:05
















5












$begingroup$


What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.



The only similarity I can find is that their exponential representation looks similar.



$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$



$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Also note the relation $$ isin(x) = sinh(ix). $$
    $endgroup$
    – MisterRiemann
    Jan 16 at 16:39








  • 2




    $begingroup$
    See Hyperbolic function.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:43






  • 2




    $begingroup$
    See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:54






  • 1




    $begingroup$
    Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
    $endgroup$
    – Lubin
    Jan 16 at 20:22












  • $begingroup$
    See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
    $endgroup$
    – Blue
    Jan 16 at 23:05














5












5








5





$begingroup$


What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.



The only similarity I can find is that their exponential representation looks similar.



$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$



$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$










share|cite|improve this question









$endgroup$




What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.



The only similarity I can find is that their exponential representation looks similar.



$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$



$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$







trigonometry complex-numbers hyperbolic-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 16 at 16:37









Sebastian WalkerSebastian Walker

262




262








  • 2




    $begingroup$
    Also note the relation $$ isin(x) = sinh(ix). $$
    $endgroup$
    – MisterRiemann
    Jan 16 at 16:39








  • 2




    $begingroup$
    See Hyperbolic function.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:43






  • 2




    $begingroup$
    See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:54






  • 1




    $begingroup$
    Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
    $endgroup$
    – Lubin
    Jan 16 at 20:22












  • $begingroup$
    See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
    $endgroup$
    – Blue
    Jan 16 at 23:05














  • 2




    $begingroup$
    Also note the relation $$ isin(x) = sinh(ix). $$
    $endgroup$
    – MisterRiemann
    Jan 16 at 16:39








  • 2




    $begingroup$
    See Hyperbolic function.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:43






  • 2




    $begingroup$
    See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 16 at 16:54






  • 1




    $begingroup$
    Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
    $endgroup$
    – Lubin
    Jan 16 at 20:22












  • $begingroup$
    See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
    $endgroup$
    – Blue
    Jan 16 at 23:05








2




2




$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39






$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39






2




2




$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43




$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43




2




2




$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54




$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54




1




1




$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22






$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22














$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05




$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075950%2fwhy-is-sinh-called-sinus-hyperbolicus-despite-being-just-a-regular-e-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075950%2fwhy-is-sinh-called-sinus-hyperbolicus-despite-being-just-a-regular-e-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅