What is the smallest value of the constant K












1












$begingroup$


Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.



My try :
enter image description here



Unable to solve further










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.



    My try :
    enter image description here



    Unable to solve further










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.



      My try :
      enter image description here



      Unable to solve further










      share|cite|improve this question











      $endgroup$




      Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.



      My try :
      enter image description here



      Unable to solve further







      real-analysis calculus limits optimization






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 18:24









      Maria Mazur

      49.7k1361124




      49.7k1361124










      asked Jan 16 at 15:51









      catttcattt

      242




      242






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint.



          $$
          sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
          $$



          and for large $x$



          $$
          sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
          left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we have to consider large x ?
            $endgroup$
            – cattt
            Jan 17 at 2:25










          • $begingroup$
            @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
            $endgroup$
            – Cesareo
            Jan 17 at 8:48



















          1












          $begingroup$

          Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$



          so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Shouldn't your last inequality be $leq$ instead of $<$ ?
            $endgroup$
            – Digitalis
            Jan 16 at 18:31












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075896%2fwhat-is-the-smallest-value-of-the-constant-k%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint.



          $$
          sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
          $$



          and for large $x$



          $$
          sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
          left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we have to consider large x ?
            $endgroup$
            – cattt
            Jan 17 at 2:25










          • $begingroup$
            @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
            $endgroup$
            – Cesareo
            Jan 17 at 8:48
















          1












          $begingroup$

          Hint.



          $$
          sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
          $$



          and for large $x$



          $$
          sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
          left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we have to consider large x ?
            $endgroup$
            – cattt
            Jan 17 at 2:25










          • $begingroup$
            @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
            $endgroup$
            – Cesareo
            Jan 17 at 8:48














          1












          1








          1





          $begingroup$

          Hint.



          $$
          sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
          $$



          and for large $x$



          $$
          sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
          left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
          $$






          share|cite|improve this answer









          $endgroup$



          Hint.



          $$
          sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
          $$



          and for large $x$



          $$
          sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
          left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 16 at 16:42









          CesareoCesareo

          9,7263517




          9,7263517












          • $begingroup$
            Why do we have to consider large x ?
            $endgroup$
            – cattt
            Jan 17 at 2:25










          • $begingroup$
            @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
            $endgroup$
            – Cesareo
            Jan 17 at 8:48


















          • $begingroup$
            Why do we have to consider large x ?
            $endgroup$
            – cattt
            Jan 17 at 2:25










          • $begingroup$
            @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
            $endgroup$
            – Cesareo
            Jan 17 at 8:48
















          $begingroup$
          Why do we have to consider large x ?
          $endgroup$
          – cattt
          Jan 17 at 2:25




          $begingroup$
          Why do we have to consider large x ?
          $endgroup$
          – cattt
          Jan 17 at 2:25












          $begingroup$
          @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
          $endgroup$
          – Cesareo
          Jan 17 at 8:48




          $begingroup$
          @cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
          $endgroup$
          – Cesareo
          Jan 17 at 8:48











          1












          $begingroup$

          Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$



          so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Shouldn't your last inequality be $leq$ instead of $<$ ?
            $endgroup$
            – Digitalis
            Jan 16 at 18:31
















          1












          $begingroup$

          Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$



          so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Shouldn't your last inequality be $leq$ instead of $<$ ?
            $endgroup$
            – Digitalis
            Jan 16 at 18:31














          1












          1








          1





          $begingroup$

          Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$



          so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$






          share|cite|improve this answer











          $endgroup$



          Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$



          so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$



          taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 18:32

























          answered Jan 16 at 16:54









          Maria MazurMaria Mazur

          49.7k1361124




          49.7k1361124








          • 1




            $begingroup$
            Shouldn't your last inequality be $leq$ instead of $<$ ?
            $endgroup$
            – Digitalis
            Jan 16 at 18:31














          • 1




            $begingroup$
            Shouldn't your last inequality be $leq$ instead of $<$ ?
            $endgroup$
            – Digitalis
            Jan 16 at 18:31








          1




          1




          $begingroup$
          Shouldn't your last inequality be $leq$ instead of $<$ ?
          $endgroup$
          – Digitalis
          Jan 16 at 18:31




          $begingroup$
          Shouldn't your last inequality be $leq$ instead of $<$ ?
          $endgroup$
          – Digitalis
          Jan 16 at 18:31


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075896%2fwhat-is-the-smallest-value-of-the-constant-k%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅