What is the smallest value of the constant K
$begingroup$
Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.
My try :
enter image description here
Unable to solve further
real-analysis calculus limits optimization
$endgroup$
add a comment |
$begingroup$
Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.
My try :
enter image description here
Unable to solve further
real-analysis calculus limits optimization
$endgroup$
add a comment |
$begingroup$
Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.
My try :
enter image description here
Unable to solve further
real-analysis calculus limits optimization
$endgroup$
Let $a, b$ are positive real numbers such that $a - b = 10$ , then the smallest value of the constant $K$ for which $sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} < K$ for all $x>0$.
My try :
enter image description here
Unable to solve further
real-analysis calculus limits optimization
real-analysis calculus limits optimization
edited Jan 16 at 18:24
Maria Mazur
49.7k1361124
49.7k1361124
asked Jan 16 at 15:51
catttcattt
242
242
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint.
$$
sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
$$
and for large $x$
$$
sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
$$
$endgroup$
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
add a comment |
$begingroup$
Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$
so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$
$endgroup$
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075896%2fwhat-is-the-smallest-value-of-the-constant-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint.
$$
sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
$$
and for large $x$
$$
sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
$$
$endgroup$
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
add a comment |
$begingroup$
Hint.
$$
sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
$$
and for large $x$
$$
sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
$$
$endgroup$
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
add a comment |
$begingroup$
Hint.
$$
sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
$$
and for large $x$
$$
sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
$$
$endgroup$
Hint.
$$
sqrt{(x^2 + ax)} - sqrt {(x^2 +bx)} = xleft(sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1}right)
$$
and for large $x$
$$
sqrt{frac{a}{x}+1}-sqrt{frac{b}{x}+1} = frac{a-b}{2 x}+frac{1}{8} left(frac{1}{x}right)^2
left(b^2-a^2right)+Oleft(left(frac{1}{x}right)^3right)
$$
answered Jan 16 at 16:42
CesareoCesareo
9,7263517
9,7263517
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
add a comment |
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
Why do we have to consider large x ?
$endgroup$
– cattt
Jan 17 at 2:25
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
$begingroup$
@cattt Because for small $x$ the expression has a value near zero, being monotonically increasing as $x$ increases.
$endgroup$
– Cesareo
Jan 17 at 8:48
add a comment |
$begingroup$
Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$
so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$
$endgroup$
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
add a comment |
$begingroup$
Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$
so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$
$endgroup$
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
add a comment |
$begingroup$
Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$
so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$
$endgroup$
Using $$ sqrt{a}-sqrt{b} = {a-bover sqrt{a}+sqrt{b}}$$
so $${(x^2+ax)-(x^2+bx)over sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
thus $${10xover sqrt{(x^2 + ax)} + sqrt {(x^2 +bx)}} < K$$
taking $xto infty$ we get $$lim _{xto infty}{10over sqrt{1 + {aover x}} + sqrt {1 +{bover x}}} = 5 leq K$$
edited Jan 16 at 18:32
answered Jan 16 at 16:54
Maria MazurMaria Mazur
49.7k1361124
49.7k1361124
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
add a comment |
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
1
1
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
$begingroup$
Shouldn't your last inequality be $leq$ instead of $<$ ?
$endgroup$
– Digitalis
Jan 16 at 18:31
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075896%2fwhat-is-the-smallest-value-of-the-constant-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown