Trying to solve a system of differential equations
$begingroup$
Let the following system $X'=AX+b(t)$ be a system of differential equations, where:
$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$
Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:
$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$
since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$
$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$
Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$
All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$
But that is not correct, what am I missing?
ordinary-differential-equations systems-of-equations
$endgroup$
|
show 1 more comment
$begingroup$
Let the following system $X'=AX+b(t)$ be a system of differential equations, where:
$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$
Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:
$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$
since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$
$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$
Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$
All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$
But that is not correct, what am I missing?
ordinary-differential-equations systems-of-equations
$endgroup$
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01
|
show 1 more comment
$begingroup$
Let the following system $X'=AX+b(t)$ be a system of differential equations, where:
$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$
Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:
$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$
since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$
$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$
Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$
All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$
But that is not correct, what am I missing?
ordinary-differential-equations systems-of-equations
$endgroup$
Let the following system $X'=AX+b(t)$ be a system of differential equations, where:
$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$
Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:
$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$
since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$
$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$
Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$
All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$
But that is not correct, what am I missing?
ordinary-differential-equations systems-of-equations
ordinary-differential-equations systems-of-equations
edited Jan 17 at 7:02
C. Cristi
asked Jan 16 at 7:04
C. CristiC. Cristi
1,634318
1,634318
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01
|
show 1 more comment
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01
|
show 1 more comment
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075404%2ftrying-to-solve-a-system-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075404%2ftrying-to-solve-a-system-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19
$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39
$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40
$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16
$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01