Trying to solve a system of differential equations












1












$begingroup$


Let the following system $X'=AX+b(t)$ be a system of differential equations, where:



$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$



Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:



$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$



since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$



$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$



Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$



All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$



But that is not correct, what am I missing?










share|cite|improve this question











$endgroup$












  • $begingroup$
    It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
    $endgroup$
    – Christoph
    Jan 16 at 7:19












  • $begingroup$
    You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
    $endgroup$
    – amd
    Jan 17 at 0:39












  • $begingroup$
    @Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
    $endgroup$
    – amd
    Jan 17 at 0:40










  • $begingroup$
    @amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
    $endgroup$
    – Christoph
    Jan 17 at 5:16










  • $begingroup$
    @amd right, i'm sorry, And how do I search for the particular solution?
    $endgroup$
    – C. Cristi
    Jan 17 at 7:01
















1












$begingroup$


Let the following system $X'=AX+b(t)$ be a system of differential equations, where:



$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$



Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:



$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$



since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$



$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$



Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$



All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$



But that is not correct, what am I missing?










share|cite|improve this question











$endgroup$












  • $begingroup$
    It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
    $endgroup$
    – Christoph
    Jan 16 at 7:19












  • $begingroup$
    You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
    $endgroup$
    – amd
    Jan 17 at 0:39












  • $begingroup$
    @Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
    $endgroup$
    – amd
    Jan 17 at 0:40










  • $begingroup$
    @amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
    $endgroup$
    – Christoph
    Jan 17 at 5:16










  • $begingroup$
    @amd right, i'm sorry, And how do I search for the particular solution?
    $endgroup$
    – C. Cristi
    Jan 17 at 7:01














1












1








1


1



$begingroup$


Let the following system $X'=AX+b(t)$ be a system of differential equations, where:



$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$



Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:



$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$



since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$



$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$



Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$



All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$



But that is not correct, what am I missing?










share|cite|improve this question











$endgroup$




Let the following system $X'=AX+b(t)$ be a system of differential equations, where:



$A=begin{pmatrix}1&-4\1&1end{pmatrix}$ and $b=begin{pmatrix}cos2t\0end{pmatrix}$



Then When trying to solve, the roots of the characteristic polynomial of the matrix are complex, therefore I'm going to use:



$$D=begin{pmatrix}a&b\-b&aend{pmatrix}$$



since $lambda_{1,2}=1pm2i$ then $D=begin{pmatrix}1&2\-2&1end{pmatrix}$
and $P=begin{pmatrix}2&0\0&-1end{pmatrix}$, then $A=PDP^{-1}$



$X'=AX=PDP^{-1}Ximplies P^{-1}X'=DP^{-1}X$
if we note $P^{-1}X=begin{pmatrix}u\vend{pmatrix}$ then a matrix of fundamental solutions for the new system is: $M(t)=e^tbegin{pmatrix}cos(2t)&sin(2t)\-sin(2t)&cos(2t)end{pmatrix}$



Then $X=Pe^tbegin{pmatrix}cos(2t)&sin(2t)\sin(2t)&cos(2t)end{pmatrix}begin{pmatrix}c_1\c_2end{pmatrix}$



All in all we get: $$X=e^tbegin{pmatrix}2c_1cos(2t)+2c_2sin(2t)\-c_1sin(2t)-c_2sin(2t)end{pmatrix}$$



But that is not correct, what am I missing?







ordinary-differential-equations systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 7:02







C. Cristi

















asked Jan 16 at 7:04









C. CristiC. Cristi

1,634318




1,634318












  • $begingroup$
    It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
    $endgroup$
    – Christoph
    Jan 16 at 7:19












  • $begingroup$
    You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
    $endgroup$
    – amd
    Jan 17 at 0:39












  • $begingroup$
    @Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
    $endgroup$
    – amd
    Jan 17 at 0:40










  • $begingroup$
    @amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
    $endgroup$
    – Christoph
    Jan 17 at 5:16










  • $begingroup$
    @amd right, i'm sorry, And how do I search for the particular solution?
    $endgroup$
    – C. Cristi
    Jan 17 at 7:01


















  • $begingroup$
    It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
    $endgroup$
    – Christoph
    Jan 16 at 7:19












  • $begingroup$
    You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
    $endgroup$
    – amd
    Jan 17 at 0:39












  • $begingroup$
    @Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
    $endgroup$
    – amd
    Jan 17 at 0:40










  • $begingroup$
    @amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
    $endgroup$
    – Christoph
    Jan 17 at 5:16










  • $begingroup$
    @amd right, i'm sorry, And how do I search for the particular solution?
    $endgroup$
    – C. Cristi
    Jan 17 at 7:01
















$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19






$begingroup$
It makes no sense to use a full matrix $D$ when $D$ should be diagonal. You need to use the eigendecomposition $A = left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array} right) left( begin{array}{cc} 1-2i & 0\ 0 & 1+2i end{array} right) left( begin{array}{cc} -2i & 2i\ 1 & 1 end{array}right)^{-1}$ with a diagonal matrix in the middle.
$endgroup$
– Christoph
Jan 16 at 7:19














$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39






$begingroup$
You keep leaving a minus sign out of the fundamental matrix in your questions. As well, $exp(tA)=Pexp(tD)P^{-1}$. Note, too, that you’ve only solved the related homogeneous equation $X'=AX$. You still need to find a particular solution of the inhomogeneous equation.
$endgroup$
– amd
Jan 17 at 0:39














$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40




$begingroup$
@Christoph A $2times2$ real matrix with complex eigenvalues is similar to a matrix of the form $small{begin{bmatrix}a&-b\b&aend{bmatrix}}$. The OP’s decomposition is perfectly good.
$endgroup$
– amd
Jan 17 at 0:40












$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16




$begingroup$
@amd I see, you're right. I guess I'm sometimes ignorant of such things which work only in very special cases, like $2 times 2$.
$endgroup$
– Christoph
Jan 17 at 5:16












$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01




$begingroup$
@amd right, i'm sorry, And how do I search for the particular solution?
$endgroup$
– C. Cristi
Jan 17 at 7:01










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075404%2ftrying-to-solve-a-system-of-differential-equations%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075404%2ftrying-to-solve-a-system-of-differential-equations%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg