$A_i=S_itimesOmega ,S_isubseteq{0,1}^{n_i} ,n_ige1$, $i=1,2$; show $A_1cup A_2$ and $A_1cap A_2$ are of the...
$begingroup$
[Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]
If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.
My approach:
To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$
Without loss of generality assume $n_1>n_2$
$S_2subseteq{0,1}^{n_2}$
Then, we get some $S_3$ such that-
$S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
$A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$
Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$
$A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$
From $(1)$ and $(2)$, we get that-
$A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$
[since, $S_1,S_3subseteq{0,1}^{n_1}$]
Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?
probability probability-theory random-walk
$endgroup$
add a comment |
$begingroup$
[Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]
If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.
My approach:
To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$
Without loss of generality assume $n_1>n_2$
$S_2subseteq{0,1}^{n_2}$
Then, we get some $S_3$ such that-
$S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
$A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$
Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$
$A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$
From $(1)$ and $(2)$, we get that-
$A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$
[since, $S_1,S_3subseteq{0,1}^{n_1}$]
Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?
probability probability-theory random-walk
$endgroup$
add a comment |
$begingroup$
[Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]
If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.
My approach:
To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$
Without loss of generality assume $n_1>n_2$
$S_2subseteq{0,1}^{n_2}$
Then, we get some $S_3$ such that-
$S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
$A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$
Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$
$A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$
From $(1)$ and $(2)$, we get that-
$A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$
[since, $S_1,S_3subseteq{0,1}^{n_1}$]
Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?
probability probability-theory random-walk
$endgroup$
[Random walk with the actual infinite sample space, $Omega={0,1}^{mathbb{N}}$]
If $A_1=S_1timesOmega$ and $A_2=S_2timesOmega$ where $S_isubseteq{0,1}^{n_i}$ for some $n_ige1$, $i=1,2$, then show that $A_1cup A_2$ and $A_1cap A_2$ are again of the same form $(S_0timesOmega)$.
My approach:
To prove: $(A_1cap A_2)=S_3timesOmega$ for some $S_3subseteq{0,1}^{n_3}$, $n_3ge1$
Without loss of generality assume $n_1>n_2$
$S_2subseteq{0,1}^{n_2}$
Then, we get some $S_3$ such that-
$S_3=S_2times{0,1}^{(n_1-n_2)}subseteq{0,1}^{(n_2)+(n_1-n_2)}={0,1}^{n_1}$
$A_2=S_2timesOmega$ where $S_2subseteq{0,1}^{n_2}$
Also, $A_2=S_3timesOmega$ where $S_3subseteq{0,1}^{n_1}$ $_{...(1)}$
$A_1=S_1timesOmega$ where $S_1subseteq{0,1}^{n_1}$ $_{...(2)}$
From $(1)$ and $(2)$, we get that-
$A_1cap A_2=(S_1cap S_3)timesOmega=S_0timesOmega$ where $S_0subseteq{0,1}^{n_1}$
[since, $S_1,S_3subseteq{0,1}^{n_1}$]
Is my approach correct? Can I prove the same for $A_1cup A_2$ similarly?
probability probability-theory random-walk
probability probability-theory random-walk
edited Jan 16 at 7:01
Za Ira
asked Jan 4 at 3:44
Za IraZa Ira
161115
161115
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061299%2fa-i-s-i-times-omega-s-i-subseteq-0-1-n-i-n-i-ge1-i-1-2-show-a-1-cu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061299%2fa-i-s-i-times-omega-s-i-subseteq-0-1-n-i-n-i-ge1-i-1-2-show-a-1-cu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown