Solving Riemann-Stieltjes integral:$int_{- pi/4}^{pi/4} f(x)dg(x)$
$begingroup$
I'm having trouble solving this Riemann-Stieltjes integral:
$$int_{- pi/4}^{pi/4} f(x)dg(x),$$ where $$f(x):= begin{cases} frac{sin^4x}{cos^2x}{} &text{if }xge0, \{}\ frac1{cos^3x} &text{if }x<0,end{cases}$$
and $$g(x)=begin{cases} phantom{-} 1+sin(x) &text{if }-pi/4 <x<pi/4, \ -1 &text{otherwise}.end{cases}$$
I believe the only jump discontinuities are at $-pi/4$ and $pi/4$. Which $g=-1$ at both of those points. I'm struggling with the rest. What formula should I be using to compute the integral and what should my answer look like? Thanks for any help!
real-analysis calculus integration trigonometry stieltjes-integral
$endgroup$
add a comment |
$begingroup$
I'm having trouble solving this Riemann-Stieltjes integral:
$$int_{- pi/4}^{pi/4} f(x)dg(x),$$ where $$f(x):= begin{cases} frac{sin^4x}{cos^2x}{} &text{if }xge0, \{}\ frac1{cos^3x} &text{if }x<0,end{cases}$$
and $$g(x)=begin{cases} phantom{-} 1+sin(x) &text{if }-pi/4 <x<pi/4, \ -1 &text{otherwise}.end{cases}$$
I believe the only jump discontinuities are at $-pi/4$ and $pi/4$. Which $g=-1$ at both of those points. I'm struggling with the rest. What formula should I be using to compute the integral and what should my answer look like? Thanks for any help!
real-analysis calculus integration trigonometry stieltjes-integral
$endgroup$
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14
add a comment |
$begingroup$
I'm having trouble solving this Riemann-Stieltjes integral:
$$int_{- pi/4}^{pi/4} f(x)dg(x),$$ where $$f(x):= begin{cases} frac{sin^4x}{cos^2x}{} &text{if }xge0, \{}\ frac1{cos^3x} &text{if }x<0,end{cases}$$
and $$g(x)=begin{cases} phantom{-} 1+sin(x) &text{if }-pi/4 <x<pi/4, \ -1 &text{otherwise}.end{cases}$$
I believe the only jump discontinuities are at $-pi/4$ and $pi/4$. Which $g=-1$ at both of those points. I'm struggling with the rest. What formula should I be using to compute the integral and what should my answer look like? Thanks for any help!
real-analysis calculus integration trigonometry stieltjes-integral
$endgroup$
I'm having trouble solving this Riemann-Stieltjes integral:
$$int_{- pi/4}^{pi/4} f(x)dg(x),$$ where $$f(x):= begin{cases} frac{sin^4x}{cos^2x}{} &text{if }xge0, \{}\ frac1{cos^3x} &text{if }x<0,end{cases}$$
and $$g(x)=begin{cases} phantom{-} 1+sin(x) &text{if }-pi/4 <x<pi/4, \ -1 &text{otherwise}.end{cases}$$
I believe the only jump discontinuities are at $-pi/4$ and $pi/4$. Which $g=-1$ at both of those points. I'm struggling with the rest. What formula should I be using to compute the integral and what should my answer look like? Thanks for any help!
real-analysis calculus integration trigonometry stieltjes-integral
real-analysis calculus integration trigonometry stieltjes-integral
edited Dec 14 '18 at 22:25
Batominovski
33.1k33293
33.1k33293
asked May 3 '13 at 0:53
DrakeDrake
4681515
4681515
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14
add a comment |
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since $g$ is differentiable on $-pi/4 <x<pi/4$ your integral changes to Riemann integral simply by the following theorem: $$int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx$$ so you will have $int_{- pi/4}^{pi/4} f(x)dg(x)= int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}d(1+sin x)=int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}cos x dx$
$endgroup$
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
add a comment |
$begingroup$
Since $g$ is differentiable there is no trouble with sum this boils down to Riemann integral of $g'cdot f$
Namely from here we have $$color{blue}{int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx}$$
Therefore,
$$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)\=int_{-pi/4}^0 frac 1{cos^2 x} dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x)$$
But $$int_{-pi/4}^0 frac 1{cos^2 x} dx =int^{pi/4}_0 (tan x)' dx =1$$
and
$$int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x) = int_0^{pi/4} frac{sin^4 x}{1-sin^2 x} d(sin x) =int_0^{sqrt{2}/2} frac{t^4 }{1-t^2 } dt\=int_0^{sqrt{2}/2} -t^2+frac{t^2 }{1-t^2 } dt$$
$$
$$
$endgroup$
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
|
show 2 more comments
$begingroup$
Let $T = pi/4$. The first term in the Riemann-Stieltjes sum, $f(xi_1)(g(x_1) - g(-T))$, does not tend to zero when $x_1 downarrow -T$ and $xi_1 downarrow -T$, and similarly for the last term. The integral is
$$I = int_{-T}^T f(x) dg(x) = \
lim_{epsilon downarrow 0} {
f(-T) (g(-T + epsilon)- g(-T)) + \
f(T) (g(T)- g(T - epsilon)) } + \
int_{-T}^T f(x) cos x ,dx = \
2 operatorname{arctanh}(sqrt 2 - 1) + frac {19 sqrt 2} 6 - 2.$$
It can be verified that
$$I = f(T) g(T) - f(-T) g(-T) - int_{-T}^T g(x) df(x) = \
f(T) g(T) - f(-T) g(-T) - \
lim_{epsilon downarrow 0} g(0) (f(epsilon) - f(-epsilon)) - \
int_{-T}^0 g(x) left( frac 1 {cos^3 x} right)' dx -
int_0^T g(x) left( frac {sin^4 x} {cos^2 x} right)' dx.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f379818%2fsolving-riemann-stieltjes-integral-int-pi-4-pi-4-fxdgx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $g$ is differentiable on $-pi/4 <x<pi/4$ your integral changes to Riemann integral simply by the following theorem: $$int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx$$ so you will have $int_{- pi/4}^{pi/4} f(x)dg(x)= int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}d(1+sin x)=int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}cos x dx$
$endgroup$
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
add a comment |
$begingroup$
Since $g$ is differentiable on $-pi/4 <x<pi/4$ your integral changes to Riemann integral simply by the following theorem: $$int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx$$ so you will have $int_{- pi/4}^{pi/4} f(x)dg(x)= int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}d(1+sin x)=int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}cos x dx$
$endgroup$
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
add a comment |
$begingroup$
Since $g$ is differentiable on $-pi/4 <x<pi/4$ your integral changes to Riemann integral simply by the following theorem: $$int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx$$ so you will have $int_{- pi/4}^{pi/4} f(x)dg(x)= int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}d(1+sin x)=int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}cos x dx$
$endgroup$
Since $g$ is differentiable on $-pi/4 <x<pi/4$ your integral changes to Riemann integral simply by the following theorem: $$int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx$$ so you will have $int_{- pi/4}^{pi/4} f(x)dg(x)= int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}d(1+sin x)=int_{- pi/4}^{pi/4}frac{sin^4x}{cos^2x}cos x dx$
answered Aug 4 '15 at 10:01
AliAli
1,9812520
1,9812520
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
add a comment |
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
The integral should really be $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)$$ or $$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} cos x dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} cos x dx$$
$endgroup$
– New day rising
Jan 7 '17 at 3:50
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
$begingroup$
Psst... both of you need to take a closer look to what happens at the endpoints.
$endgroup$
– user361424
Jun 28 '17 at 0:55
add a comment |
$begingroup$
Since $g$ is differentiable there is no trouble with sum this boils down to Riemann integral of $g'cdot f$
Namely from here we have $$color{blue}{int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx}$$
Therefore,
$$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)\=int_{-pi/4}^0 frac 1{cos^2 x} dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x)$$
But $$int_{-pi/4}^0 frac 1{cos^2 x} dx =int^{pi/4}_0 (tan x)' dx =1$$
and
$$int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x) = int_0^{pi/4} frac{sin^4 x}{1-sin^2 x} d(sin x) =int_0^{sqrt{2}/2} frac{t^4 }{1-t^2 } dt\=int_0^{sqrt{2}/2} -t^2+frac{t^2 }{1-t^2 } dt$$
$$
$$
$endgroup$
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
|
show 2 more comments
$begingroup$
Since $g$ is differentiable there is no trouble with sum this boils down to Riemann integral of $g'cdot f$
Namely from here we have $$color{blue}{int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx}$$
Therefore,
$$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)\=int_{-pi/4}^0 frac 1{cos^2 x} dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x)$$
But $$int_{-pi/4}^0 frac 1{cos^2 x} dx =int^{pi/4}_0 (tan x)' dx =1$$
and
$$int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x) = int_0^{pi/4} frac{sin^4 x}{1-sin^2 x} d(sin x) =int_0^{sqrt{2}/2} frac{t^4 }{1-t^2 } dt\=int_0^{sqrt{2}/2} -t^2+frac{t^2 }{1-t^2 } dt$$
$$
$$
$endgroup$
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
|
show 2 more comments
$begingroup$
Since $g$ is differentiable there is no trouble with sum this boils down to Riemann integral of $g'cdot f$
Namely from here we have $$color{blue}{int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx}$$
Therefore,
$$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)\=int_{-pi/4}^0 frac 1{cos^2 x} dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x)$$
But $$int_{-pi/4}^0 frac 1{cos^2 x} dx =int^{pi/4}_0 (tan x)' dx =1$$
and
$$int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x) = int_0^{pi/4} frac{sin^4 x}{1-sin^2 x} d(sin x) =int_0^{sqrt{2}/2} frac{t^4 }{1-t^2 } dt\=int_0^{sqrt{2}/2} -t^2+frac{t^2 }{1-t^2 } dt$$
$$
$$
$endgroup$
Since $g$ is differentiable there is no trouble with sum this boils down to Riemann integral of $g'cdot f$
Namely from here we have $$color{blue}{int_a^bf(x)dg(x)=int_a^bf(x)g'(x)dx}$$
Therefore,
$$int_{-pi/4}^{pi/4} f(x) dg(x) = int_{-pi/4}^0 frac 1{cos^3 x} d(1+sin x) + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(1+sin x)\=int_{-pi/4}^0 frac 1{cos^2 x} dx + int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x)$$
But $$int_{-pi/4}^0 frac 1{cos^2 x} dx =int^{pi/4}_0 (tan x)' dx =1$$
and
$$int_0^{pi/4} frac{sin^4 x}{cos^2 x} d(sin x) = int_0^{pi/4} frac{sin^4 x}{1-sin^2 x} d(sin x) =int_0^{sqrt{2}/2} frac{t^4 }{1-t^2 } dt\=int_0^{sqrt{2}/2} -t^2+frac{t^2 }{1-t^2 } dt$$
$$
$$
edited Jan 2 '18 at 9:02
answered Dec 15 '17 at 14:27
Guy FsoneGuy Fsone
17.2k43074
17.2k43074
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
|
show 2 more comments
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
The first formula isn't applicable when $g$ has jump discontinuities.
$endgroup$
– Maxim
May 28 '18 at 21:15
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
@Maxim It is possible the discontinuities are of first order.
$endgroup$
– Guy Fsone
May 30 '18 at 7:14
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
There are zero order discontinuities at the endpoints. See my answer.
$endgroup$
– Maxim
May 30 '18 at 9:42
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
@Maxim what do you mean by zero order discontnuity?
$endgroup$
– Guy Fsone
May 31 '18 at 1:52
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
$begingroup$
I mean that the function itself (the derivative of zero order) is discontinuous.
$endgroup$
– Maxim
May 31 '18 at 9:45
|
show 2 more comments
$begingroup$
Let $T = pi/4$. The first term in the Riemann-Stieltjes sum, $f(xi_1)(g(x_1) - g(-T))$, does not tend to zero when $x_1 downarrow -T$ and $xi_1 downarrow -T$, and similarly for the last term. The integral is
$$I = int_{-T}^T f(x) dg(x) = \
lim_{epsilon downarrow 0} {
f(-T) (g(-T + epsilon)- g(-T)) + \
f(T) (g(T)- g(T - epsilon)) } + \
int_{-T}^T f(x) cos x ,dx = \
2 operatorname{arctanh}(sqrt 2 - 1) + frac {19 sqrt 2} 6 - 2.$$
It can be verified that
$$I = f(T) g(T) - f(-T) g(-T) - int_{-T}^T g(x) df(x) = \
f(T) g(T) - f(-T) g(-T) - \
lim_{epsilon downarrow 0} g(0) (f(epsilon) - f(-epsilon)) - \
int_{-T}^0 g(x) left( frac 1 {cos^3 x} right)' dx -
int_0^T g(x) left( frac {sin^4 x} {cos^2 x} right)' dx.$$
$endgroup$
add a comment |
$begingroup$
Let $T = pi/4$. The first term in the Riemann-Stieltjes sum, $f(xi_1)(g(x_1) - g(-T))$, does not tend to zero when $x_1 downarrow -T$ and $xi_1 downarrow -T$, and similarly for the last term. The integral is
$$I = int_{-T}^T f(x) dg(x) = \
lim_{epsilon downarrow 0} {
f(-T) (g(-T + epsilon)- g(-T)) + \
f(T) (g(T)- g(T - epsilon)) } + \
int_{-T}^T f(x) cos x ,dx = \
2 operatorname{arctanh}(sqrt 2 - 1) + frac {19 sqrt 2} 6 - 2.$$
It can be verified that
$$I = f(T) g(T) - f(-T) g(-T) - int_{-T}^T g(x) df(x) = \
f(T) g(T) - f(-T) g(-T) - \
lim_{epsilon downarrow 0} g(0) (f(epsilon) - f(-epsilon)) - \
int_{-T}^0 g(x) left( frac 1 {cos^3 x} right)' dx -
int_0^T g(x) left( frac {sin^4 x} {cos^2 x} right)' dx.$$
$endgroup$
add a comment |
$begingroup$
Let $T = pi/4$. The first term in the Riemann-Stieltjes sum, $f(xi_1)(g(x_1) - g(-T))$, does not tend to zero when $x_1 downarrow -T$ and $xi_1 downarrow -T$, and similarly for the last term. The integral is
$$I = int_{-T}^T f(x) dg(x) = \
lim_{epsilon downarrow 0} {
f(-T) (g(-T + epsilon)- g(-T)) + \
f(T) (g(T)- g(T - epsilon)) } + \
int_{-T}^T f(x) cos x ,dx = \
2 operatorname{arctanh}(sqrt 2 - 1) + frac {19 sqrt 2} 6 - 2.$$
It can be verified that
$$I = f(T) g(T) - f(-T) g(-T) - int_{-T}^T g(x) df(x) = \
f(T) g(T) - f(-T) g(-T) - \
lim_{epsilon downarrow 0} g(0) (f(epsilon) - f(-epsilon)) - \
int_{-T}^0 g(x) left( frac 1 {cos^3 x} right)' dx -
int_0^T g(x) left( frac {sin^4 x} {cos^2 x} right)' dx.$$
$endgroup$
Let $T = pi/4$. The first term in the Riemann-Stieltjes sum, $f(xi_1)(g(x_1) - g(-T))$, does not tend to zero when $x_1 downarrow -T$ and $xi_1 downarrow -T$, and similarly for the last term. The integral is
$$I = int_{-T}^T f(x) dg(x) = \
lim_{epsilon downarrow 0} {
f(-T) (g(-T + epsilon)- g(-T)) + \
f(T) (g(T)- g(T - epsilon)) } + \
int_{-T}^T f(x) cos x ,dx = \
2 operatorname{arctanh}(sqrt 2 - 1) + frac {19 sqrt 2} 6 - 2.$$
It can be verified that
$$I = f(T) g(T) - f(-T) g(-T) - int_{-T}^T g(x) df(x) = \
f(T) g(T) - f(-T) g(-T) - \
lim_{epsilon downarrow 0} g(0) (f(epsilon) - f(-epsilon)) - \
int_{-T}^0 g(x) left( frac 1 {cos^3 x} right)' dx -
int_0^T g(x) left( frac {sin^4 x} {cos^2 x} right)' dx.$$
edited May 28 '18 at 21:35
answered May 28 '18 at 20:47
MaximMaxim
6,1681221
6,1681221
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f379818%2fsolving-riemann-stieltjes-integral-int-pi-4-pi-4-fxdgx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Check this theorem.
$endgroup$
– Mhenni Benghorbal
May 3 '13 at 1:08
$begingroup$
Can you elaborate how to solve the last integral in that theorem (related to my problem). I can see why I would use it since both f and g have no common discontinuities.
$endgroup$
– Drake
May 6 '13 at 13:51
$begingroup$
CAS says:$1-{frac {7,sqrt {2}}{12}}+ln left( 1+sqrt {2} right) $
$endgroup$
– Mariusz Iwaniuk
Oct 1 '18 at 22:14