Showing solution satisfies PDE (chain rule help)
$begingroup$
We have $$u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)ds$$ and want to show it satisfies the PDE $$partial_t u + a cdot Du = f$$
The solution given goes as follows $$partial_t u + acdot Du = - a cdot nabla g(x-at) +f(x,t) + int_0^t nabla f(x+(s-t)a, s) cdot (-a) ds \ + a cdot nabla g(x-at) + acdot int_0^t nabla f(x+(s-t)a, s) ds$$ $$= f(x, t)$$ as required
However, I have no idea how these terms have appeared. In particular, I'm not sure why we have a grad appearing for $g$ and the $f(x, t)$ seems to come from nowhere...
Any insight is appreciated.
pde chain-rule transport-equation
$endgroup$
add a comment |
$begingroup$
We have $$u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)ds$$ and want to show it satisfies the PDE $$partial_t u + a cdot Du = f$$
The solution given goes as follows $$partial_t u + acdot Du = - a cdot nabla g(x-at) +f(x,t) + int_0^t nabla f(x+(s-t)a, s) cdot (-a) ds \ + a cdot nabla g(x-at) + acdot int_0^t nabla f(x+(s-t)a, s) ds$$ $$= f(x, t)$$ as required
However, I have no idea how these terms have appeared. In particular, I'm not sure why we have a grad appearing for $g$ and the $f(x, t)$ seems to come from nowhere...
Any insight is appreciated.
pde chain-rule transport-equation
$endgroup$
add a comment |
$begingroup$
We have $$u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)ds$$ and want to show it satisfies the PDE $$partial_t u + a cdot Du = f$$
The solution given goes as follows $$partial_t u + acdot Du = - a cdot nabla g(x-at) +f(x,t) + int_0^t nabla f(x+(s-t)a, s) cdot (-a) ds \ + a cdot nabla g(x-at) + acdot int_0^t nabla f(x+(s-t)a, s) ds$$ $$= f(x, t)$$ as required
However, I have no idea how these terms have appeared. In particular, I'm not sure why we have a grad appearing for $g$ and the $f(x, t)$ seems to come from nowhere...
Any insight is appreciated.
pde chain-rule transport-equation
$endgroup$
We have $$u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)ds$$ and want to show it satisfies the PDE $$partial_t u + a cdot Du = f$$
The solution given goes as follows $$partial_t u + acdot Du = - a cdot nabla g(x-at) +f(x,t) + int_0^t nabla f(x+(s-t)a, s) cdot (-a) ds \ + a cdot nabla g(x-at) + acdot int_0^t nabla f(x+(s-t)a, s) ds$$ $$= f(x, t)$$ as required
However, I have no idea how these terms have appeared. In particular, I'm not sure why we have a grad appearing for $g$ and the $f(x, t)$ seems to come from nowhere...
Any insight is appreciated.
pde chain-rule transport-equation
pde chain-rule transport-equation
edited Jan 16 at 16:40
Harry49
8,47431344
8,47431344
asked Jan 16 at 8:26
PhysicsMathsLovePhysicsMathsLove
1,236415
1,236415
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The first three terms arise from the chain rule to calculate $u_t$. First, you dot-multiply the gradient of $g$ by the derivative of the function inside $g$ with respect to $t$, which is the vector $-a$, next you have to take the $t$-derivative of an integral that contains $t$ both in the limit of integration and in the integrand. For that you have to combine the fundamental theorem, setting $s=t$ in the integrand, and a "convective" term including the $t$ derivative of the integrand $-a$. The last two terms arise in a similar way, but now to take the $x$ - gradient of the integral with fixed limits you just take it on the integrand.
It is just too long to write down all details...
$endgroup$
add a comment |
$begingroup$
Hint: Use Leibniz's integral rule to show that
begin{align}
frac{partial}{partial t}int_0^t f(x+a(s-t),s) ds &= f(x+a(s-t),s)Bigvert_{s=t} - int_0^t frac{partial}{partial t}f(x+a(s-t),s) ds \
&= f(x,t) - int_0^t (-a)f'(x+a(s-t),s) ds
end{align}
The gradient here just means the first derivative of a single variable, i.e.
$$ frac{partial}{partial t} g(x-at) = -ag'(x-at) $$
Try it your self with the remaining derivatives.
$endgroup$
add a comment |
$begingroup$
Consider the function :
$$u(x, t) = g(X, Y) + int_0^t f(Psi, Phi)ds$$
where $$begin{cases}
X=x-at & frac{partial X}{partial x}=1 quad & frac{partial X}{partial t}=-a\
Y=0 \
Psi=x+a(s-t) & frac{partial Psi}{partial x}=1quad & frac{partialPsi}{partial t}=-a\
Phi=s end{cases}$$
$frac{partial g}{partial x}=frac{partial g}{partial X}frac{partial X}{partial x}=frac{partial g}{partial X}$
$frac{partial g}{partial t}=frac{partial g}{partial X}frac{partial X}{partial t}=-afrac{partial g}{partial X}$
$frac{partial f}{partial x}=frac{partial f}{partial Psi}frac{partial Psi}{partial x}=frac{partial f}{partial Psi}$
$frac{partial f}{partial t}=frac{partial f}{partial Psi}frac{partial Psi}{partial t}=-afrac{partial f}{partial Psi}$
$frac{partial }{partial x}int_0^t f(Psi, Phi)ds =int_0^t frac{partial f}{partial x}ds =int_0^t frac{partial f}{partial psi}ds$
$frac{partial }{partial t}int_0^t f(Psi,Phi)ds = left(f(Psi,Phi)right)_{s=t}+int_0^t frac{partial f}{partial t}ds = f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $
Because $f(Psi,Phi)=f(x,t)$ for $s=t$ :
$Psi=x+a(s-t)=x+a(t-t)=xquad$ and $quadPhi=s=t$ .
$$frac{partial u }{partial x}=frac{partial g }{partial x}+frac{partial }{partial x}int_0^t f(Psi, Phi)ds= frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}ds$$
$$frac{partial u }{partial t}=frac{partial g }{partial t}+frac{partial }{partial t}int_0^t f(Psi, Phi)ds=-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $$
$$frac{partial u }{partial t}+afrac{partial u }{partial x}=
left(-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds right) +
aleft( frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}dsright)$$
After simplification :
$quadfrac{partial u }{partial t}+afrac{partial u }{partial x}=f(x,t)$
Thus the function $quad u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)dsquad$
satisfies the PDE $quad partial_t u + a: partial_x u = f$ .
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075467%2fshowing-solution-satisfies-pde-chain-rule-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first three terms arise from the chain rule to calculate $u_t$. First, you dot-multiply the gradient of $g$ by the derivative of the function inside $g$ with respect to $t$, which is the vector $-a$, next you have to take the $t$-derivative of an integral that contains $t$ both in the limit of integration and in the integrand. For that you have to combine the fundamental theorem, setting $s=t$ in the integrand, and a "convective" term including the $t$ derivative of the integrand $-a$. The last two terms arise in a similar way, but now to take the $x$ - gradient of the integral with fixed limits you just take it on the integrand.
It is just too long to write down all details...
$endgroup$
add a comment |
$begingroup$
The first three terms arise from the chain rule to calculate $u_t$. First, you dot-multiply the gradient of $g$ by the derivative of the function inside $g$ with respect to $t$, which is the vector $-a$, next you have to take the $t$-derivative of an integral that contains $t$ both in the limit of integration and in the integrand. For that you have to combine the fundamental theorem, setting $s=t$ in the integrand, and a "convective" term including the $t$ derivative of the integrand $-a$. The last two terms arise in a similar way, but now to take the $x$ - gradient of the integral with fixed limits you just take it on the integrand.
It is just too long to write down all details...
$endgroup$
add a comment |
$begingroup$
The first three terms arise from the chain rule to calculate $u_t$. First, you dot-multiply the gradient of $g$ by the derivative of the function inside $g$ with respect to $t$, which is the vector $-a$, next you have to take the $t$-derivative of an integral that contains $t$ both in the limit of integration and in the integrand. For that you have to combine the fundamental theorem, setting $s=t$ in the integrand, and a "convective" term including the $t$ derivative of the integrand $-a$. The last two terms arise in a similar way, but now to take the $x$ - gradient of the integral with fixed limits you just take it on the integrand.
It is just too long to write down all details...
$endgroup$
The first three terms arise from the chain rule to calculate $u_t$. First, you dot-multiply the gradient of $g$ by the derivative of the function inside $g$ with respect to $t$, which is the vector $-a$, next you have to take the $t$-derivative of an integral that contains $t$ both in the limit of integration and in the integrand. For that you have to combine the fundamental theorem, setting $s=t$ in the integrand, and a "convective" term including the $t$ derivative of the integrand $-a$. The last two terms arise in a similar way, but now to take the $x$ - gradient of the integral with fixed limits you just take it on the integrand.
It is just too long to write down all details...
answered Jan 16 at 9:00
GReyesGReyes
2,33315
2,33315
add a comment |
add a comment |
$begingroup$
Hint: Use Leibniz's integral rule to show that
begin{align}
frac{partial}{partial t}int_0^t f(x+a(s-t),s) ds &= f(x+a(s-t),s)Bigvert_{s=t} - int_0^t frac{partial}{partial t}f(x+a(s-t),s) ds \
&= f(x,t) - int_0^t (-a)f'(x+a(s-t),s) ds
end{align}
The gradient here just means the first derivative of a single variable, i.e.
$$ frac{partial}{partial t} g(x-at) = -ag'(x-at) $$
Try it your self with the remaining derivatives.
$endgroup$
add a comment |
$begingroup$
Hint: Use Leibniz's integral rule to show that
begin{align}
frac{partial}{partial t}int_0^t f(x+a(s-t),s) ds &= f(x+a(s-t),s)Bigvert_{s=t} - int_0^t frac{partial}{partial t}f(x+a(s-t),s) ds \
&= f(x,t) - int_0^t (-a)f'(x+a(s-t),s) ds
end{align}
The gradient here just means the first derivative of a single variable, i.e.
$$ frac{partial}{partial t} g(x-at) = -ag'(x-at) $$
Try it your self with the remaining derivatives.
$endgroup$
add a comment |
$begingroup$
Hint: Use Leibniz's integral rule to show that
begin{align}
frac{partial}{partial t}int_0^t f(x+a(s-t),s) ds &= f(x+a(s-t),s)Bigvert_{s=t} - int_0^t frac{partial}{partial t}f(x+a(s-t),s) ds \
&= f(x,t) - int_0^t (-a)f'(x+a(s-t),s) ds
end{align}
The gradient here just means the first derivative of a single variable, i.e.
$$ frac{partial}{partial t} g(x-at) = -ag'(x-at) $$
Try it your self with the remaining derivatives.
$endgroup$
Hint: Use Leibniz's integral rule to show that
begin{align}
frac{partial}{partial t}int_0^t f(x+a(s-t),s) ds &= f(x+a(s-t),s)Bigvert_{s=t} - int_0^t frac{partial}{partial t}f(x+a(s-t),s) ds \
&= f(x,t) - int_0^t (-a)f'(x+a(s-t),s) ds
end{align}
The gradient here just means the first derivative of a single variable, i.e.
$$ frac{partial}{partial t} g(x-at) = -ag'(x-at) $$
Try it your self with the remaining derivatives.
answered Jan 16 at 12:22
DylanDylan
14.2k31127
14.2k31127
add a comment |
add a comment |
$begingroup$
Consider the function :
$$u(x, t) = g(X, Y) + int_0^t f(Psi, Phi)ds$$
where $$begin{cases}
X=x-at & frac{partial X}{partial x}=1 quad & frac{partial X}{partial t}=-a\
Y=0 \
Psi=x+a(s-t) & frac{partial Psi}{partial x}=1quad & frac{partialPsi}{partial t}=-a\
Phi=s end{cases}$$
$frac{partial g}{partial x}=frac{partial g}{partial X}frac{partial X}{partial x}=frac{partial g}{partial X}$
$frac{partial g}{partial t}=frac{partial g}{partial X}frac{partial X}{partial t}=-afrac{partial g}{partial X}$
$frac{partial f}{partial x}=frac{partial f}{partial Psi}frac{partial Psi}{partial x}=frac{partial f}{partial Psi}$
$frac{partial f}{partial t}=frac{partial f}{partial Psi}frac{partial Psi}{partial t}=-afrac{partial f}{partial Psi}$
$frac{partial }{partial x}int_0^t f(Psi, Phi)ds =int_0^t frac{partial f}{partial x}ds =int_0^t frac{partial f}{partial psi}ds$
$frac{partial }{partial t}int_0^t f(Psi,Phi)ds = left(f(Psi,Phi)right)_{s=t}+int_0^t frac{partial f}{partial t}ds = f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $
Because $f(Psi,Phi)=f(x,t)$ for $s=t$ :
$Psi=x+a(s-t)=x+a(t-t)=xquad$ and $quadPhi=s=t$ .
$$frac{partial u }{partial x}=frac{partial g }{partial x}+frac{partial }{partial x}int_0^t f(Psi, Phi)ds= frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}ds$$
$$frac{partial u }{partial t}=frac{partial g }{partial t}+frac{partial }{partial t}int_0^t f(Psi, Phi)ds=-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $$
$$frac{partial u }{partial t}+afrac{partial u }{partial x}=
left(-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds right) +
aleft( frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}dsright)$$
After simplification :
$quadfrac{partial u }{partial t}+afrac{partial u }{partial x}=f(x,t)$
Thus the function $quad u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)dsquad$
satisfies the PDE $quad partial_t u + a: partial_x u = f$ .
$endgroup$
add a comment |
$begingroup$
Consider the function :
$$u(x, t) = g(X, Y) + int_0^t f(Psi, Phi)ds$$
where $$begin{cases}
X=x-at & frac{partial X}{partial x}=1 quad & frac{partial X}{partial t}=-a\
Y=0 \
Psi=x+a(s-t) & frac{partial Psi}{partial x}=1quad & frac{partialPsi}{partial t}=-a\
Phi=s end{cases}$$
$frac{partial g}{partial x}=frac{partial g}{partial X}frac{partial X}{partial x}=frac{partial g}{partial X}$
$frac{partial g}{partial t}=frac{partial g}{partial X}frac{partial X}{partial t}=-afrac{partial g}{partial X}$
$frac{partial f}{partial x}=frac{partial f}{partial Psi}frac{partial Psi}{partial x}=frac{partial f}{partial Psi}$
$frac{partial f}{partial t}=frac{partial f}{partial Psi}frac{partial Psi}{partial t}=-afrac{partial f}{partial Psi}$
$frac{partial }{partial x}int_0^t f(Psi, Phi)ds =int_0^t frac{partial f}{partial x}ds =int_0^t frac{partial f}{partial psi}ds$
$frac{partial }{partial t}int_0^t f(Psi,Phi)ds = left(f(Psi,Phi)right)_{s=t}+int_0^t frac{partial f}{partial t}ds = f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $
Because $f(Psi,Phi)=f(x,t)$ for $s=t$ :
$Psi=x+a(s-t)=x+a(t-t)=xquad$ and $quadPhi=s=t$ .
$$frac{partial u }{partial x}=frac{partial g }{partial x}+frac{partial }{partial x}int_0^t f(Psi, Phi)ds= frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}ds$$
$$frac{partial u }{partial t}=frac{partial g }{partial t}+frac{partial }{partial t}int_0^t f(Psi, Phi)ds=-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $$
$$frac{partial u }{partial t}+afrac{partial u }{partial x}=
left(-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds right) +
aleft( frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}dsright)$$
After simplification :
$quadfrac{partial u }{partial t}+afrac{partial u }{partial x}=f(x,t)$
Thus the function $quad u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)dsquad$
satisfies the PDE $quad partial_t u + a: partial_x u = f$ .
$endgroup$
add a comment |
$begingroup$
Consider the function :
$$u(x, t) = g(X, Y) + int_0^t f(Psi, Phi)ds$$
where $$begin{cases}
X=x-at & frac{partial X}{partial x}=1 quad & frac{partial X}{partial t}=-a\
Y=0 \
Psi=x+a(s-t) & frac{partial Psi}{partial x}=1quad & frac{partialPsi}{partial t}=-a\
Phi=s end{cases}$$
$frac{partial g}{partial x}=frac{partial g}{partial X}frac{partial X}{partial x}=frac{partial g}{partial X}$
$frac{partial g}{partial t}=frac{partial g}{partial X}frac{partial X}{partial t}=-afrac{partial g}{partial X}$
$frac{partial f}{partial x}=frac{partial f}{partial Psi}frac{partial Psi}{partial x}=frac{partial f}{partial Psi}$
$frac{partial f}{partial t}=frac{partial f}{partial Psi}frac{partial Psi}{partial t}=-afrac{partial f}{partial Psi}$
$frac{partial }{partial x}int_0^t f(Psi, Phi)ds =int_0^t frac{partial f}{partial x}ds =int_0^t frac{partial f}{partial psi}ds$
$frac{partial }{partial t}int_0^t f(Psi,Phi)ds = left(f(Psi,Phi)right)_{s=t}+int_0^t frac{partial f}{partial t}ds = f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $
Because $f(Psi,Phi)=f(x,t)$ for $s=t$ :
$Psi=x+a(s-t)=x+a(t-t)=xquad$ and $quadPhi=s=t$ .
$$frac{partial u }{partial x}=frac{partial g }{partial x}+frac{partial }{partial x}int_0^t f(Psi, Phi)ds= frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}ds$$
$$frac{partial u }{partial t}=frac{partial g }{partial t}+frac{partial }{partial t}int_0^t f(Psi, Phi)ds=-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $$
$$frac{partial u }{partial t}+afrac{partial u }{partial x}=
left(-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds right) +
aleft( frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}dsright)$$
After simplification :
$quadfrac{partial u }{partial t}+afrac{partial u }{partial x}=f(x,t)$
Thus the function $quad u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)dsquad$
satisfies the PDE $quad partial_t u + a: partial_x u = f$ .
$endgroup$
Consider the function :
$$u(x, t) = g(X, Y) + int_0^t f(Psi, Phi)ds$$
where $$begin{cases}
X=x-at & frac{partial X}{partial x}=1 quad & frac{partial X}{partial t}=-a\
Y=0 \
Psi=x+a(s-t) & frac{partial Psi}{partial x}=1quad & frac{partialPsi}{partial t}=-a\
Phi=s end{cases}$$
$frac{partial g}{partial x}=frac{partial g}{partial X}frac{partial X}{partial x}=frac{partial g}{partial X}$
$frac{partial g}{partial t}=frac{partial g}{partial X}frac{partial X}{partial t}=-afrac{partial g}{partial X}$
$frac{partial f}{partial x}=frac{partial f}{partial Psi}frac{partial Psi}{partial x}=frac{partial f}{partial Psi}$
$frac{partial f}{partial t}=frac{partial f}{partial Psi}frac{partial Psi}{partial t}=-afrac{partial f}{partial Psi}$
$frac{partial }{partial x}int_0^t f(Psi, Phi)ds =int_0^t frac{partial f}{partial x}ds =int_0^t frac{partial f}{partial psi}ds$
$frac{partial }{partial t}int_0^t f(Psi,Phi)ds = left(f(Psi,Phi)right)_{s=t}+int_0^t frac{partial f}{partial t}ds = f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $
Because $f(Psi,Phi)=f(x,t)$ for $s=t$ :
$Psi=x+a(s-t)=x+a(t-t)=xquad$ and $quadPhi=s=t$ .
$$frac{partial u }{partial x}=frac{partial g }{partial x}+frac{partial }{partial x}int_0^t f(Psi, Phi)ds= frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}ds$$
$$frac{partial u }{partial t}=frac{partial g }{partial t}+frac{partial }{partial t}int_0^t f(Psi, Phi)ds=-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds $$
$$frac{partial u }{partial t}+afrac{partial u }{partial x}=
left(-afrac{partial g}{partial X} +f(x,t)-aint_0^t frac{partial f}{partial Psi}ds right) +
aleft( frac{partial g}{partial X}+int_0^t frac{partial f}{partial Psi}dsright)$$
After simplification :
$quadfrac{partial u }{partial t}+afrac{partial u }{partial x}=f(x,t)$
Thus the function $quad u(x, t) = g(x-at, 0) + int_0^t f(x+a(s-t), s)dsquad$
satisfies the PDE $quad partial_t u + a: partial_x u = f$ .
edited Jan 16 at 17:01
answered Jan 16 at 14:00
JJacquelinJJacquelin
45.3k21856
45.3k21856
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075467%2fshowing-solution-satisfies-pde-chain-rule-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown