Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
$begingroup$
Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.
But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.
Please clarify!!!
calculus multivariable-calculus vectors vector-analysis
$endgroup$
add a comment |
$begingroup$
Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.
But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.
Please clarify!!!
calculus multivariable-calculus vectors vector-analysis
$endgroup$
1
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
1
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12
add a comment |
$begingroup$
Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.
But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.
Please clarify!!!
calculus multivariable-calculus vectors vector-analysis
$endgroup$
Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.
But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.
Please clarify!!!
calculus multivariable-calculus vectors vector-analysis
calculus multivariable-calculus vectors vector-analysis
edited Jan 11 at 20:41
mechanodroid
28.5k62548
28.5k62548
asked Jan 11 at 19:05
sejysejy
1629
1629
1
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
1
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12
add a comment |
1
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
1
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12
1
1
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
1
1
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$
$endgroup$
add a comment |
$begingroup$
Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
$$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
Then your normal is given by
$$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$
so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
Now notice that $mathbf{F}$ is actually the identity function so the integral equals
$$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
which is $4pi a^3$.
On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
$$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070224%2fverify-gauss-divergence-theorem-of-f-xiyjzk-over-the-sphere-x2y2z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$
$endgroup$
add a comment |
$begingroup$
Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$
$endgroup$
add a comment |
$begingroup$
Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$
$endgroup$
Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$
answered Jan 11 at 20:08
Christian BlatterChristian Blatter
175k8115327
175k8115327
add a comment |
add a comment |
$begingroup$
Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
$$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
Then your normal is given by
$$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$
so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
Now notice that $mathbf{F}$ is actually the identity function so the integral equals
$$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
which is $4pi a^3$.
On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
$$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$
$endgroup$
add a comment |
$begingroup$
Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
$$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
Then your normal is given by
$$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$
so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
Now notice that $mathbf{F}$ is actually the identity function so the integral equals
$$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
which is $4pi a^3$.
On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
$$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$
$endgroup$
add a comment |
$begingroup$
Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
$$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
Then your normal is given by
$$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$
so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
Now notice that $mathbf{F}$ is actually the identity function so the integral equals
$$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
which is $4pi a^3$.
On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
$$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$
$endgroup$
Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
$$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
Then your normal is given by
$$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$
so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
Now notice that $mathbf{F}$ is actually the identity function so the integral equals
$$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
which is $4pi a^3$.
On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
$$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$
answered Jan 11 at 20:38
mechanodroidmechanodroid
28.5k62548
28.5k62548
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070224%2fverify-gauss-divergence-theorem-of-f-xiyjzk-over-the-sphere-x2y2z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11
1
$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12