Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$












2












$begingroup$


Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.



But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.



Please clarify!!!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $div F =3$ you should find $4pi a^3$.
    $endgroup$
    – hamam_Abdallah
    Jan 11 at 19:11






  • 1




    $begingroup$
    You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
    $endgroup$
    – pwerth
    Jan 11 at 19:12
















2












$begingroup$


Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.



But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.



Please clarify!!!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $div F =3$ you should find $4pi a^3$.
    $endgroup$
    – hamam_Abdallah
    Jan 11 at 19:11






  • 1




    $begingroup$
    You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
    $endgroup$
    – pwerth
    Jan 11 at 19:12














2












2








2





$begingroup$


Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.



But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.



Please clarify!!!










share|cite|improve this question











$endgroup$




Verify Gauss divergence theorem of $F=xi+yj+zk$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
When I evaluate taking normal $N=k$, I get the answer $2pi a^{3}$.
But when I take normal to the surface by taking out gradient of $f(x,y,z)= x^{2}+y^{2}+z^{2}$ I am able to verify theorem.



But my course instructor told we can take normal $N=k$ when whenever we are able to translate system in $xy$ plane .
And if plane is given then we have to find gradient otherwise not.



Please clarify!!!







calculus multivariable-calculus vectors vector-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 11 at 20:41









mechanodroid

28.5k62548




28.5k62548










asked Jan 11 at 19:05









sejysejy

1629




1629








  • 1




    $begingroup$
    $div F =3$ you should find $4pi a^3$.
    $endgroup$
    – hamam_Abdallah
    Jan 11 at 19:11






  • 1




    $begingroup$
    You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
    $endgroup$
    – pwerth
    Jan 11 at 19:12














  • 1




    $begingroup$
    $div F =3$ you should find $4pi a^3$.
    $endgroup$
    – hamam_Abdallah
    Jan 11 at 19:11






  • 1




    $begingroup$
    You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
    $endgroup$
    – pwerth
    Jan 11 at 19:12








1




1




$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11




$begingroup$
$div F =3$ you should find $4pi a^3$.
$endgroup$
– hamam_Abdallah
Jan 11 at 19:11




1




1




$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12




$begingroup$
You can only use $vec{k}$ as the normal vector to your surface when the surface is parallel to the $xy-$plane.
$endgroup$
– pwerth
Jan 11 at 19:12










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
$$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
On the other hand, ${rm div}({bf F})equiv3$, and therefore
$$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
    $$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
    Then your normal is given by
    $$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$



    so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
    Now notice that $mathbf{F}$ is actually the identity function so the integral equals
    $$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
    which is $4pi a^3$.



    On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
    $$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070224%2fverify-gauss-divergence-theorem-of-f-xiyjzk-over-the-sphere-x2y2z%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
      $$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
      On the other hand, ${rm div}({bf F})equiv3$, and therefore
      $$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
        $$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
        On the other hand, ${rm div}({bf F})equiv3$, and therefore
        $$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
          $$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
          On the other hand, ${rm div}({bf F})equiv3$, and therefore
          $$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$






          share|cite|improve this answer









          $endgroup$



          Let $S_a$ be your sphere, and $B_a$ the enclosed ball. For each point ${bf r}in S_a$ the outwards unit normal ${bf n}$ is given by ${bf n}={{bf r}over a}$. Furthermore ${bf F}({bf r})={bf r}$. Since ${bf r}cdot{bf r}=a^2$ on $S_a$ it follows that
          $$int_{S_a}{bf F}cdot{bf n}>{rm d}omega=int_{S_a}{bf r}cdot{{bf r}over a}>{rm d}omega=aint_{S_a}{rm d}omega=4pi a^3 .$$
          On the other hand, ${rm div}({bf F})equiv3$, and therefore
          $$int_{B_a}{rm div}({bf F})>{rm dvol}=3,{rm vol}(B_a)=4pi a^3 .$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 20:08









          Christian BlatterChristian Blatter

          175k8115327




          175k8115327























              1












              $begingroup$

              Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
              $$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
              Then your normal is given by
              $$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$



              so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
              Now notice that $mathbf{F}$ is actually the identity function so the integral equals
              $$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
              which is $4pi a^3$.



              On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
              $$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
                $$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
                Then your normal is given by
                $$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$



                so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
                Now notice that $mathbf{F}$ is actually the identity function so the integral equals
                $$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
                which is $4pi a^3$.



                On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
                $$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
                  $$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
                  Then your normal is given by
                  $$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$



                  so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
                  Now notice that $mathbf{F}$ is actually the identity function so the integral equals
                  $$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
                  which is $4pi a^3$.



                  On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
                  $$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$






                  share|cite|improve this answer









                  $endgroup$



                  Parameterize your sphere using spherical coordinates as $psi : [0,pi] times [0,2pi] to mathbb{R}^3$ given by
                  $$psi(theta, phi) = a(sinthetacosphi, sinthetasinphi, costheta)$$
                  Then your normal is given by
                  $$mathbf{n}(theta, phi) = frac{partialpsi}{partialtheta} times frac{partialpsi}{partialphi} = a^2(sin^2thetacosphi, sin^2thetasinphi, sinthetacostheta) = (asintheta),psi(theta,phi)$$



                  so $$intlimits_{S(0,a)} mathbf{F}cdot dmathbf{A} = intlimits_{[0,pi] times [0,2pi]} mathbf{F}(psi(theta, phi))cdot ,mathbf{n}(theta, phi),dtheta,dphi $$
                  Now notice that $mathbf{F}$ is actually the identity function so the integral equals
                  $$intlimits_{[0,pi] times [0,2pi]} (acostheta)psi(theta, phi)cdot ,psi(theta, phi),dtheta,dphi = int_{theta=0}^pi int_{phi=0}^{2pi} a^3sintheta,dtheta,dphi$$
                  which is $4pi a^3$.



                  On the other hand, $operatorname{div} mathbf{F} = operatorname{Tr} nablamathbf{F} = operatorname{Tr} mathbf{F} = 3$ so
                  $$int_{B(0,a)} operatorname{div} mathbf{F} ,dV = 3 operatorname{vol}big(B(0,a)big) = 4pi a^3$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 11 at 20:38









                  mechanodroidmechanodroid

                  28.5k62548




                  28.5k62548






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070224%2fverify-gauss-divergence-theorem-of-f-xiyjzk-over-the-sphere-x2y2z%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      File:DeusFollowingSea.jpg