Solving a Cauchy problem, differential equation












2












$begingroup$


I have the following Cauchy problem



begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}



I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :



$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$



then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$



I have attempted to solve it in this way:



$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$



$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 at 18:15
















2












$begingroup$


I have the following Cauchy problem



begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}



I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :



$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$



then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$



I have attempted to solve it in this way:



$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$



$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 at 18:15














2












2








2





$begingroup$


I have the following Cauchy problem



begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}



I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :



$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$



then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$



I have attempted to solve it in this way:



$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$



$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.










share|cite|improve this question











$endgroup$




I have the following Cauchy problem



begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}



I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :



$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$



then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$



I have attempted to solve it in this way:



$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$



$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$



Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.







ordinary-differential-equations cauchy-problem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 19:14









Robert Z

101k1070143




101k1070143










asked Jan 15 at 18:07









andrewandrew

698




698












  • $begingroup$
    Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 at 18:15


















  • $begingroup$
    Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 at 18:15
















$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15




$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15










2 Answers
2






active

oldest

votes


















4












$begingroup$

Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The condition is $y(0) = 0$
    $endgroup$
    – andrew
    Jan 15 at 18:52












  • $begingroup$
    @andrew OK. Have you tried to go on?
    $endgroup$
    – Robert Z
    Jan 15 at 18:54










  • $begingroup$
    yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
    $endgroup$
    – andrew
    Jan 16 at 18:30












  • $begingroup$
    then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
    $endgroup$
    – andrew
    Jan 16 at 18:30






  • 1




    $begingroup$
    Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
    $endgroup$
    – Robert Z
    Jan 16 at 18:46





















2












$begingroup$

Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074737%2fsolving-a-cauchy-problem-differential-equation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
    $$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
    Can you take it from here? ... and do not forget the constant of integration!






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      The condition is $y(0) = 0$
      $endgroup$
      – andrew
      Jan 15 at 18:52












    • $begingroup$
      @andrew OK. Have you tried to go on?
      $endgroup$
      – Robert Z
      Jan 15 at 18:54










    • $begingroup$
      yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
      $endgroup$
      – andrew
      Jan 16 at 18:30












    • $begingroup$
      then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
      $endgroup$
      – andrew
      Jan 16 at 18:30






    • 1




      $begingroup$
      Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
      $endgroup$
      – Robert Z
      Jan 16 at 18:46


















    4












    $begingroup$

    Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
    $$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
    Can you take it from here? ... and do not forget the constant of integration!






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      The condition is $y(0) = 0$
      $endgroup$
      – andrew
      Jan 15 at 18:52












    • $begingroup$
      @andrew OK. Have you tried to go on?
      $endgroup$
      – Robert Z
      Jan 15 at 18:54










    • $begingroup$
      yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
      $endgroup$
      – andrew
      Jan 16 at 18:30












    • $begingroup$
      then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
      $endgroup$
      – andrew
      Jan 16 at 18:30






    • 1




      $begingroup$
      Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
      $endgroup$
      – Robert Z
      Jan 16 at 18:46
















    4












    4








    4





    $begingroup$

    Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
    $$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
    Can you take it from here? ... and do not forget the constant of integration!






    share|cite|improve this answer











    $endgroup$



    Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
    $$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
    Can you take it from here? ... and do not forget the constant of integration!







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 15 at 19:12

























    answered Jan 15 at 18:27









    Robert ZRobert Z

    101k1070143




    101k1070143












    • $begingroup$
      The condition is $y(0) = 0$
      $endgroup$
      – andrew
      Jan 15 at 18:52












    • $begingroup$
      @andrew OK. Have you tried to go on?
      $endgroup$
      – Robert Z
      Jan 15 at 18:54










    • $begingroup$
      yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
      $endgroup$
      – andrew
      Jan 16 at 18:30












    • $begingroup$
      then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
      $endgroup$
      – andrew
      Jan 16 at 18:30






    • 1




      $begingroup$
      Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
      $endgroup$
      – Robert Z
      Jan 16 at 18:46




















    • $begingroup$
      The condition is $y(0) = 0$
      $endgroup$
      – andrew
      Jan 15 at 18:52












    • $begingroup$
      @andrew OK. Have you tried to go on?
      $endgroup$
      – Robert Z
      Jan 15 at 18:54










    • $begingroup$
      yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
      $endgroup$
      – andrew
      Jan 16 at 18:30












    • $begingroup$
      then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
      $endgroup$
      – andrew
      Jan 16 at 18:30






    • 1




      $begingroup$
      Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
      $endgroup$
      – Robert Z
      Jan 16 at 18:46


















    $begingroup$
    The condition is $y(0) = 0$
    $endgroup$
    – andrew
    Jan 15 at 18:52






    $begingroup$
    The condition is $y(0) = 0$
    $endgroup$
    – andrew
    Jan 15 at 18:52














    $begingroup$
    @andrew OK. Have you tried to go on?
    $endgroup$
    – Robert Z
    Jan 15 at 18:54




    $begingroup$
    @andrew OK. Have you tried to go on?
    $endgroup$
    – Robert Z
    Jan 15 at 18:54












    $begingroup$
    yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
    $endgroup$
    – andrew
    Jan 16 at 18:30






    $begingroup$
    yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
    $endgroup$
    – andrew
    Jan 16 at 18:30














    $begingroup$
    then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
    $endgroup$
    – andrew
    Jan 16 at 18:30




    $begingroup$
    then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
    $endgroup$
    – andrew
    Jan 16 at 18:30




    1




    1




    $begingroup$
    Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
    $endgroup$
    – Robert Z
    Jan 16 at 18:46






    $begingroup$
    Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
    $endgroup$
    – Robert Z
    Jan 16 at 18:46













    2












    $begingroup$

    Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
    $$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
      $$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
        $$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$






        share|cite|improve this answer









        $endgroup$



        Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
        $$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 15 at 18:20









        Dr. Sonnhard GraubnerDr. Sonnhard Graubner

        78.4k42867




        78.4k42867






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074737%2fsolving-a-cauchy-problem-differential-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅