Solving a Cauchy problem, differential equation
$begingroup$
I have the following Cauchy problem
begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}
I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :
$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$
then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$
I have attempted to solve it in this way:
$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$
$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.
ordinary-differential-equations cauchy-problem
$endgroup$
add a comment |
$begingroup$
I have the following Cauchy problem
begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}
I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :
$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$
then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$
I have attempted to solve it in this way:
$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$
$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.
ordinary-differential-equations cauchy-problem
$endgroup$
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15
add a comment |
$begingroup$
I have the following Cauchy problem
begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}
I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :
$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$
then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$
I have attempted to solve it in this way:
$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$
$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.
ordinary-differential-equations cauchy-problem
$endgroup$
I have the following Cauchy problem
begin{cases} y'(x) + frac{1}{x^2-1}y(x) = sqrt{x+1} \ y(0) = 0 end{cases}
I proceed by finding $e^{A(x)} $ where $A(x)$ is the primitive of $a(x)= frac{1}{x^2-1}$ :
$$int A(x)dx=int frac{1}{x^2-1}dx= frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)+c $$
then I obtain : $$e^{A(x)}=e^{frac{1}{2} logBig(frac{|x-1|}{|x+1|}Big)}=Big(frac{|x-1|}{|x+1|}Big)^{frac{1}{2}}=sqrt{frac{|x-1|}{|x+1|} }$$
I have attempted to solve it in this way:
$$ sqrt{frac{|x-1|}{|x+1|} }cdot y'(x) + frac{1}{x^2-1}cdot sqrt{frac{|x-1|}{|x+1|} }y = sqrt{x+1}cdotsqrt{frac{|x-1|}{|x+1|} }$$
$$sqrt{frac{|x-1|}{|x+1|} }*y(x) =int sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
$$y(x) =Big(sqrt{frac{|x-1|}{|x+1|} }Big)^{-1}cdotint sqrt{frac{x+1}{|x+1|}}cdotsqrt{|x-1|}dx$$
Is it correct doing this? From here I am not sure how to proceed. Thanks in advance for any help.
ordinary-differential-equations cauchy-problem
ordinary-differential-equations cauchy-problem
edited Jan 15 at 19:14
Robert Z
101k1070143
101k1070143
asked Jan 15 at 18:07
andrewandrew
698
698
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15
add a comment |
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!
$endgroup$
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
|
show 2 more comments
$begingroup$
Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074737%2fsolving-a-cauchy-problem-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!
$endgroup$
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
|
show 2 more comments
$begingroup$
Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!
$endgroup$
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
|
show 2 more comments
$begingroup$
Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!
$endgroup$
Note that since you have on the right side $sqrt{x+1}$, we may assume that $xgeq -1$. Moreover the coefficient $frac{1}{x^2-1}$ implies that $xnot=pm 1$. Since the initial point is given at $x=0$, the interval $I$ of existence of your solution is contained in $(-1,1)$. Hence you may decide the sign of the arguments of the absolute values and, according to your attempt (which is correct),
$$sqrt{frac{1-x}{1+x}}cdot y(x) =int sqrt{1-x},dx.$$
Can you take it from here? ... and do not forget the constant of integration!
edited Jan 15 at 19:12
answered Jan 15 at 18:27
Robert ZRobert Z
101k1070143
101k1070143
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
|
show 2 more comments
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
The condition is $y(0) = 0$
$endgroup$
– andrew
Jan 15 at 18:52
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
@andrew OK. Have you tried to go on?
$endgroup$
– Robert Z
Jan 15 at 18:54
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
yes Robert Z, I obtain that: $$ sqrt{frac{1-x}{x+1} }cdot y'(x) + frac{1}{x^2-1}cdotsqrt{frac{1-x}{x+1} }y = sqrt{x+1}cdotsqrt{frac{1-x}{x+1} }$$ $$ sqrt{frac{1-x}{x+1} }*y(x) = int sqrt{1-x}dx+c$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
$begingroup$
then $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ int sqrt{1-x}dx+cBig]$$ $$y(x) =Big(sqrt{frac{1-x}{x+1}}Big)^{-1}*Big[ - frac{2}{3} sqrt{(1-x)^3}+cBig]$$ rembering that $y(0)=0$ well $$ y(0)=-frac{2}{3}+c=0$$ $$ c=frac{2}{3}$$ Then the solution is : $$y(x)=Big(frac{1}{sqrt{frac{1-x}{x+1}}}Big)*[ - frac{2}{3} sqrt{(1-x)^3}+frac{2}{3}Big]$$
$endgroup$
– andrew
Jan 16 at 18:30
1
1
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
$begingroup$
Looking at your previous questions it seems that you are not aware of the fact that you can can mark one answer as "accepted". Please see math.stackexchange.com/tour
$endgroup$
– Robert Z
Jan 16 at 18:46
|
show 2 more comments
$begingroup$
Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$
$endgroup$
add a comment |
$begingroup$
Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$
$endgroup$
add a comment |
$begingroup$
Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$
$endgroup$
Computing $$mu(x)=e^{intfrac{1}{x^2-1}dx}=frac{sqrt{1-x}}{sqrt{1+x}}$$ then you will get
$$intfrac{d}{dx}left(frac{sqrt{1-x}y(x)}{sqrt{x+1}}right)=intsqrt{1-x}dx$$
answered Jan 15 at 18:20
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.4k42867
78.4k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074737%2fsolving-a-cauchy-problem-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Maple says this here $$y left( x right) ={frac { left( x+1 right) {it _C1}}{sqrt {-{x }^{2}+1}}}+2/3, left( x-1 right) sqrt {x+1} $$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 at 18:15