Plotting a solution of a differential equation with Sagemath
$begingroup$
I need to solve a differential equation. The solution will depend on $t$ and $q$, and I need to define that $q$ piecewise depending on $t$.
var('k,Tmax,Tmin,w,T0,q'); T=function('T')(t); Te=function('Te')(t);
assume(k>0); assume(Tmax>Tmin); Te(t)=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t);
Now this is the differential equation solution:
sol=desolve(diff(T(t),t)-q+k*(T(t)-Te(t)),[T,t],[0,T0]);
The solution with $q=0$ for example would be
sol.subs(Tmax=21.6,Tmin=15.2,k=0.024,q=0,T0=15.6,w=pi/12);
but I need that q to be a model for a heater that's on from 8 AM to 22 PM, and off from 22 PM to 8 AM. So I need to define a $q$ function that if $t mod 24$ is between $8$ and $22$ its value is $0.0504$, and $0$ otherwise. Something like this
$$q(t)=begin{cases}0.0504 quad if quad t mod 24 in[8,22] \ 0 qquad qquad otherwiseend{cases}$$
I've been trying with the piecewise function but it's not plotting anything, I always get error messages.
Thanks for your time.
calculus ordinary-differential-equations graphing-functions piecewise-continuity sagemath
$endgroup$
add a comment |
$begingroup$
I need to solve a differential equation. The solution will depend on $t$ and $q$, and I need to define that $q$ piecewise depending on $t$.
var('k,Tmax,Tmin,w,T0,q'); T=function('T')(t); Te=function('Te')(t);
assume(k>0); assume(Tmax>Tmin); Te(t)=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t);
Now this is the differential equation solution:
sol=desolve(diff(T(t),t)-q+k*(T(t)-Te(t)),[T,t],[0,T0]);
The solution with $q=0$ for example would be
sol.subs(Tmax=21.6,Tmin=15.2,k=0.024,q=0,T0=15.6,w=pi/12);
but I need that q to be a model for a heater that's on from 8 AM to 22 PM, and off from 22 PM to 8 AM. So I need to define a $q$ function that if $t mod 24$ is between $8$ and $22$ its value is $0.0504$, and $0$ otherwise. Something like this
$$q(t)=begin{cases}0.0504 quad if quad t mod 24 in[8,22] \ 0 qquad qquad otherwiseend{cases}$$
I've been trying with the piecewise function but it's not plotting anything, I always get error messages.
Thanks for your time.
calculus ordinary-differential-equations graphing-functions piecewise-continuity sagemath
$endgroup$
add a comment |
$begingroup$
I need to solve a differential equation. The solution will depend on $t$ and $q$, and I need to define that $q$ piecewise depending on $t$.
var('k,Tmax,Tmin,w,T0,q'); T=function('T')(t); Te=function('Te')(t);
assume(k>0); assume(Tmax>Tmin); Te(t)=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t);
Now this is the differential equation solution:
sol=desolve(diff(T(t),t)-q+k*(T(t)-Te(t)),[T,t],[0,T0]);
The solution with $q=0$ for example would be
sol.subs(Tmax=21.6,Tmin=15.2,k=0.024,q=0,T0=15.6,w=pi/12);
but I need that q to be a model for a heater that's on from 8 AM to 22 PM, and off from 22 PM to 8 AM. So I need to define a $q$ function that if $t mod 24$ is between $8$ and $22$ its value is $0.0504$, and $0$ otherwise. Something like this
$$q(t)=begin{cases}0.0504 quad if quad t mod 24 in[8,22] \ 0 qquad qquad otherwiseend{cases}$$
I've been trying with the piecewise function but it's not plotting anything, I always get error messages.
Thanks for your time.
calculus ordinary-differential-equations graphing-functions piecewise-continuity sagemath
$endgroup$
I need to solve a differential equation. The solution will depend on $t$ and $q$, and I need to define that $q$ piecewise depending on $t$.
var('k,Tmax,Tmin,w,T0,q'); T=function('T')(t); Te=function('Te')(t);
assume(k>0); assume(Tmax>Tmin); Te(t)=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t);
Now this is the differential equation solution:
sol=desolve(diff(T(t),t)-q+k*(T(t)-Te(t)),[T,t],[0,T0]);
The solution with $q=0$ for example would be
sol.subs(Tmax=21.6,Tmin=15.2,k=0.024,q=0,T0=15.6,w=pi/12);
but I need that q to be a model for a heater that's on from 8 AM to 22 PM, and off from 22 PM to 8 AM. So I need to define a $q$ function that if $t mod 24$ is between $8$ and $22$ its value is $0.0504$, and $0$ otherwise. Something like this
$$q(t)=begin{cases}0.0504 quad if quad t mod 24 in[8,22] \ 0 qquad qquad otherwiseend{cases}$$
I've been trying with the piecewise function but it's not plotting anything, I always get error messages.
Thanks for your time.
calculus ordinary-differential-equations graphing-functions piecewise-continuity sagemath
calculus ordinary-differential-equations graphing-functions piecewise-continuity sagemath
edited Nov 25 '18 at 6:04
Relure
asked Nov 25 '18 at 2:33
RelureRelure
2,1871035
2,1871035
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can express $q(t)$ as a sum of differences of step functions. Also, it's more efficient to solve the differential equation numerically. I assume you want to plot the solution for some number of days (which can be specified in the code).
days=3
Tmax=21.6; Tmin=15.2; k=0.024; T0=15.6; w=pi/12
var('t');
Te=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t)
We define $q(t)$:
q = 0.0504*sum(unit_step(t-8-d*24) - unit_step(t-22-d*24) for d in range(days))
plot(q,t,0,days*24)
We define the ODE (also the one with $q(t)=0$, to compare):
T=function('T')(t);
ode0 = diff(T,t) == -k*(T-Te)
ode1 = diff(T,t) == q-k*(T-Te)
Finally we solve and plot:
sol0=desolve_rk4(ode0, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24)
sol1=desolve_rk4(ode1, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24, color='red')
sol0 + sol1
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012355%2fplotting-a-solution-of-a-differential-equation-with-sagemath%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can express $q(t)$ as a sum of differences of step functions. Also, it's more efficient to solve the differential equation numerically. I assume you want to plot the solution for some number of days (which can be specified in the code).
days=3
Tmax=21.6; Tmin=15.2; k=0.024; T0=15.6; w=pi/12
var('t');
Te=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t)
We define $q(t)$:
q = 0.0504*sum(unit_step(t-8-d*24) - unit_step(t-22-d*24) for d in range(days))
plot(q,t,0,days*24)
We define the ODE (also the one with $q(t)=0$, to compare):
T=function('T')(t);
ode0 = diff(T,t) == -k*(T-Te)
ode1 = diff(T,t) == q-k*(T-Te)
Finally we solve and plot:
sol0=desolve_rk4(ode0, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24)
sol1=desolve_rk4(ode1, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24, color='red')
sol0 + sol1
$endgroup$
add a comment |
$begingroup$
You can express $q(t)$ as a sum of differences of step functions. Also, it's more efficient to solve the differential equation numerically. I assume you want to plot the solution for some number of days (which can be specified in the code).
days=3
Tmax=21.6; Tmin=15.2; k=0.024; T0=15.6; w=pi/12
var('t');
Te=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t)
We define $q(t)$:
q = 0.0504*sum(unit_step(t-8-d*24) - unit_step(t-22-d*24) for d in range(days))
plot(q,t,0,days*24)
We define the ODE (also the one with $q(t)=0$, to compare):
T=function('T')(t);
ode0 = diff(T,t) == -k*(T-Te)
ode1 = diff(T,t) == q-k*(T-Te)
Finally we solve and plot:
sol0=desolve_rk4(ode0, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24)
sol1=desolve_rk4(ode1, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24, color='red')
sol0 + sol1
$endgroup$
add a comment |
$begingroup$
You can express $q(t)$ as a sum of differences of step functions. Also, it's more efficient to solve the differential equation numerically. I assume you want to plot the solution for some number of days (which can be specified in the code).
days=3
Tmax=21.6; Tmin=15.2; k=0.024; T0=15.6; w=pi/12
var('t');
Te=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t)
We define $q(t)$:
q = 0.0504*sum(unit_step(t-8-d*24) - unit_step(t-22-d*24) for d in range(days))
plot(q,t,0,days*24)
We define the ODE (also the one with $q(t)=0$, to compare):
T=function('T')(t);
ode0 = diff(T,t) == -k*(T-Te)
ode1 = diff(T,t) == q-k*(T-Te)
Finally we solve and plot:
sol0=desolve_rk4(ode0, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24)
sol1=desolve_rk4(ode1, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24, color='red')
sol0 + sol1
$endgroup$
You can express $q(t)$ as a sum of differences of step functions. Also, it's more efficient to solve the differential equation numerically. I assume you want to plot the solution for some number of days (which can be specified in the code).
days=3
Tmax=21.6; Tmin=15.2; k=0.024; T0=15.6; w=pi/12
var('t');
Te=(Tmax+Tmin)/2+(Tmax-Tmin)/2*sin(w*t)
We define $q(t)$:
q = 0.0504*sum(unit_step(t-8-d*24) - unit_step(t-22-d*24) for d in range(days))
plot(q,t,0,days*24)
We define the ODE (also the one with $q(t)=0$, to compare):
T=function('T')(t);
ode0 = diff(T,t) == -k*(T-Te)
ode1 = diff(T,t) == q-k*(T-Te)
Finally we solve and plot:
sol0=desolve_rk4(ode0, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24)
sol1=desolve_rk4(ode1, T, ivar=t, ics=[0,T0], step=0.1, end_points=[0,days*24], output='plot', xmin=0,xmax=days*24, color='red')
sol0 + sol1
answered Jan 15 at 17:25
Ricardo BuringRicardo Buring
1,51111334
1,51111334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012355%2fplotting-a-solution-of-a-differential-equation-with-sagemath%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown