Showing ${f(frac{1}{n+1})}$ converges in $mathbb{R}$
$begingroup$
Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.
Attempt:
Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.
The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.
Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.
PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.
real-analysis calculus proof-verification cauchy-sequences lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.
Attempt:
Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.
The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.
Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.
PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.
real-analysis calculus proof-verification cauchy-sequences lipschitz-functions
$endgroup$
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09
add a comment |
$begingroup$
Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.
Attempt:
Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.
The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.
Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.
PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.
real-analysis calculus proof-verification cauchy-sequences lipschitz-functions
$endgroup$
Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.
Attempt:
Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.
The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.
Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.
PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.
real-analysis calculus proof-verification cauchy-sequences lipschitz-functions
real-analysis calculus proof-verification cauchy-sequences lipschitz-functions
edited Jan 12 at 20:54
Subhasis Biswas
asked Jan 12 at 20:45
Subhasis BiswasSubhasis Biswas
512411
512411
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09
add a comment |
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
An other approach.
$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$
$$f text{ is Uniformly continuous at } (0,1) implies $$
$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$
$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$
PS
I know that tomorrow my total points will decrease with NO reason. should i change my name.
$endgroup$
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071372%2fshowing-f-frac1n1-converges-in-mathbbr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An other approach.
$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$
$$f text{ is Uniformly continuous at } (0,1) implies $$
$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$
$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$
PS
I know that tomorrow my total points will decrease with NO reason. should i change my name.
$endgroup$
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
add a comment |
$begingroup$
An other approach.
$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$
$$f text{ is Uniformly continuous at } (0,1) implies $$
$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$
$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$
PS
I know that tomorrow my total points will decrease with NO reason. should i change my name.
$endgroup$
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
add a comment |
$begingroup$
An other approach.
$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$
$$f text{ is Uniformly continuous at } (0,1) implies $$
$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$
$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$
PS
I know that tomorrow my total points will decrease with NO reason. should i change my name.
$endgroup$
An other approach.
$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$
$$f text{ is Uniformly continuous at } (0,1) implies $$
$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$
$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$
PS
I know that tomorrow my total points will decrease with NO reason. should i change my name.
answered Jan 12 at 21:01
hamam_Abdallahhamam_Abdallah
38.2k21634
38.2k21634
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
add a comment |
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071372%2fshowing-f-frac1n1-converges-in-mathbbr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02
$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09