Showing ${f(frac{1}{n+1})}$ converges in $mathbb{R}$












2












$begingroup$


Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.



Attempt:



Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.



The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.



Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.



PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your answer is Correct.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 21:02










  • $begingroup$
    Looks fine to.me.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:09
















2












$begingroup$


Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.



Attempt:



Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.



The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.



Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.



PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your answer is Correct.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 21:02










  • $begingroup$
    Looks fine to.me.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:09














2












2








2





$begingroup$


Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.



Attempt:



Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.



The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.



Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.



PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.










share|cite|improve this question











$endgroup$




Question: Let $f:(0,1) to mathbb{R}$ be a differentiable function such that $|f'(x)| leq 5$, for all $x in (0,1)$. Show that the sequence ${f(frac{1}{n+1})}$ converges in $mathbb{R}$.



Attempt:



Consider any $a, b$ such that $[a,b] subset (0,1)$. By LMVT $|frac{f(b)-f(a)}{b-a}| leq 5$ $implies |f(b)-f(a)|leq 5|b-a|$.



The sequence ${frac{1}{n+1}$} converges. Hence, by Cauchy's General Principle, $forall epsilon >0$, $exists N>0$ such that $|frac{1}{n+1}-frac{1}{m+1}| < epsilon/5$ for every $m, n >N$.



Hence, $ |f(frac{1}{n+1})-f(frac{1}{m+1})|leq 5|frac{1}{n+1}-frac{1}{m+1}|< epsilon$, whenever $m, n >N$.



PS: Please do check the solution thoroughly. Kindly correct any "false assumptions", "weak -wordings", "misplaced predicates" etc. A little help goes a long way. I am struggling with proper proof writing right now.







real-analysis calculus proof-verification cauchy-sequences lipschitz-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 20:54







Subhasis Biswas

















asked Jan 12 at 20:45









Subhasis BiswasSubhasis Biswas

512411




512411












  • $begingroup$
    Your answer is Correct.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 21:02










  • $begingroup$
    Looks fine to.me.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:09


















  • $begingroup$
    Your answer is Correct.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 21:02










  • $begingroup$
    Looks fine to.me.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:09
















$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02




$begingroup$
Your answer is Correct.
$endgroup$
– hamam_Abdallah
Jan 12 at 21:02












$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09




$begingroup$
Looks fine to.me.
$endgroup$
– Peter Szilas
Jan 12 at 22:09










1 Answer
1






active

oldest

votes


















2












$begingroup$

An other approach.



$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$



$$f text{ is Uniformly continuous at } (0,1) implies $$



$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$



$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$



PS



I know that tomorrow my total points will decrease with NO reason. should i change my name.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:22










  • $begingroup$
    C'est le théorème du prolongement des fonctions uniformément continues.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 22:53










  • $begingroup$
    hamam.Merci bien., Peter
    $endgroup$
    – Peter Szilas
    Jan 13 at 9:20











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071372%2fshowing-f-frac1n1-converges-in-mathbbr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

An other approach.



$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$



$$f text{ is Uniformly continuous at } (0,1) implies $$



$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$



$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$



PS



I know that tomorrow my total points will decrease with NO reason. should i change my name.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:22










  • $begingroup$
    C'est le théorème du prolongement des fonctions uniformément continues.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 22:53










  • $begingroup$
    hamam.Merci bien., Peter
    $endgroup$
    – Peter Szilas
    Jan 13 at 9:20
















2












$begingroup$

An other approach.



$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$



$$f text{ is Uniformly continuous at } (0,1) implies $$



$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$



$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$



PS



I know that tomorrow my total points will decrease with NO reason. should i change my name.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:22










  • $begingroup$
    C'est le théorème du prolongement des fonctions uniformément continues.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 22:53










  • $begingroup$
    hamam.Merci bien., Peter
    $endgroup$
    – Peter Szilas
    Jan 13 at 9:20














2












2








2





$begingroup$

An other approach.



$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$



$$f text{ is Uniformly continuous at } (0,1) implies $$



$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$



$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$



PS



I know that tomorrow my total points will decrease with NO reason. should i change my name.






share|cite|improve this answer









$endgroup$



An other approach.



$$(forall xin (0,1)) ; |f'(x)|le 5 implies $$



$$f text{ is Uniformly continuous at } (0,1) implies $$



$$lim_{xto 0^+}f(x) text{ exists in } Bbb R implies$$



$$lim_{nto +infty}f(frac{1}{n+1})in Bbb R.$$



PS



I know that tomorrow my total points will decrease with NO reason. should i change my name.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 12 at 21:01









hamam_Abdallahhamam_Abdallah

38.2k21634




38.2k21634












  • $begingroup$
    hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:22










  • $begingroup$
    C'est le théorème du prolongement des fonctions uniformément continues.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 22:53










  • $begingroup$
    hamam.Merci bien., Peter
    $endgroup$
    – Peter Szilas
    Jan 13 at 9:20


















  • $begingroup$
    hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:22










  • $begingroup$
    C'est le théorème du prolongement des fonctions uniformément continues.
    $endgroup$
    – hamam_Abdallah
    Jan 12 at 22:53










  • $begingroup$
    hamam.Merci bien., Peter
    $endgroup$
    – Peter Szilas
    Jan 13 at 9:20
















$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22




$begingroup$
hamam.Please elaborate.f uniformly continuous in (0,1) implies $ lim_{x rightarrow 0^+} f(x) in R exists.Thanks.
$endgroup$
– Peter Szilas
Jan 12 at 22:22












$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53




$begingroup$
C'est le théorème du prolongement des fonctions uniformément continues.
$endgroup$
– hamam_Abdallah
Jan 12 at 22:53












$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20




$begingroup$
hamam.Merci bien., Peter
$endgroup$
– Peter Szilas
Jan 13 at 9:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071372%2fshowing-f-frac1n1-converges-in-mathbbr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅