DTFT (Discrete Time Fourier Transform) duality property applied to cos / sin
$begingroup$
Normal DTFT table contains:
$$
cos(omega_0 n) xrightarrow{DTFT 2pi} pi delta[omega - omega_0] + pi delta[omega + omega_0]
$$
$$
sin(omega_0 n) xrightarrow{DTFT 2pi} i pi delta[omega - omega_0] - i pi delta[omega + omega_0]
$$
How would I apply "duality property" to obtain DTFT transform for:
$$
??? xrightarrow{DTFT 2pi} cos(omega_0 omega)
$$
$$
??? xrightarrow{DTFT 2pi} sin(omega_0 omega)
$$
??? = fill in the blanks.
fourier-transform z-transform
$endgroup$
add a comment |
$begingroup$
Normal DTFT table contains:
$$
cos(omega_0 n) xrightarrow{DTFT 2pi} pi delta[omega - omega_0] + pi delta[omega + omega_0]
$$
$$
sin(omega_0 n) xrightarrow{DTFT 2pi} i pi delta[omega - omega_0] - i pi delta[omega + omega_0]
$$
How would I apply "duality property" to obtain DTFT transform for:
$$
??? xrightarrow{DTFT 2pi} cos(omega_0 omega)
$$
$$
??? xrightarrow{DTFT 2pi} sin(omega_0 omega)
$$
??? = fill in the blanks.
fourier-transform z-transform
$endgroup$
add a comment |
$begingroup$
Normal DTFT table contains:
$$
cos(omega_0 n) xrightarrow{DTFT 2pi} pi delta[omega - omega_0] + pi delta[omega + omega_0]
$$
$$
sin(omega_0 n) xrightarrow{DTFT 2pi} i pi delta[omega - omega_0] - i pi delta[omega + omega_0]
$$
How would I apply "duality property" to obtain DTFT transform for:
$$
??? xrightarrow{DTFT 2pi} cos(omega_0 omega)
$$
$$
??? xrightarrow{DTFT 2pi} sin(omega_0 omega)
$$
??? = fill in the blanks.
fourier-transform z-transform
$endgroup$
Normal DTFT table contains:
$$
cos(omega_0 n) xrightarrow{DTFT 2pi} pi delta[omega - omega_0] + pi delta[omega + omega_0]
$$
$$
sin(omega_0 n) xrightarrow{DTFT 2pi} i pi delta[omega - omega_0] - i pi delta[omega + omega_0]
$$
How would I apply "duality property" to obtain DTFT transform for:
$$
??? xrightarrow{DTFT 2pi} cos(omega_0 omega)
$$
$$
??? xrightarrow{DTFT 2pi} sin(omega_0 omega)
$$
??? = fill in the blanks.
fourier-transform z-transform
fourier-transform z-transform
edited Jan 12 at 21:38
user
5,36211030
5,36211030
asked Jan 12 at 20:43
MrCasualityMrCasuality
82
82
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer is that you don't need to use duality to derive DTFT of sin and cos in reverse. You just need to use these identities:
$$
cos(omega) = frac{1}{2} (e^{i omega}+e^{-i omega})
$$
$$
sin(omega) = frac{1}{2i} (e^{i omega}-e^{-i omega})
$$
Then the following DTFT Transforms:
$$
delta[n-d] xrightarrow{DTFT} e^{-i omega d}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071369%2fdtft-discrete-time-fourier-transform-duality-property-applied-to-cos-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is that you don't need to use duality to derive DTFT of sin and cos in reverse. You just need to use these identities:
$$
cos(omega) = frac{1}{2} (e^{i omega}+e^{-i omega})
$$
$$
sin(omega) = frac{1}{2i} (e^{i omega}-e^{-i omega})
$$
Then the following DTFT Transforms:
$$
delta[n-d] xrightarrow{DTFT} e^{-i omega d}
$$
$endgroup$
add a comment |
$begingroup$
The answer is that you don't need to use duality to derive DTFT of sin and cos in reverse. You just need to use these identities:
$$
cos(omega) = frac{1}{2} (e^{i omega}+e^{-i omega})
$$
$$
sin(omega) = frac{1}{2i} (e^{i omega}-e^{-i omega})
$$
Then the following DTFT Transforms:
$$
delta[n-d] xrightarrow{DTFT} e^{-i omega d}
$$
$endgroup$
add a comment |
$begingroup$
The answer is that you don't need to use duality to derive DTFT of sin and cos in reverse. You just need to use these identities:
$$
cos(omega) = frac{1}{2} (e^{i omega}+e^{-i omega})
$$
$$
sin(omega) = frac{1}{2i} (e^{i omega}-e^{-i omega})
$$
Then the following DTFT Transforms:
$$
delta[n-d] xrightarrow{DTFT} e^{-i omega d}
$$
$endgroup$
The answer is that you don't need to use duality to derive DTFT of sin and cos in reverse. You just need to use these identities:
$$
cos(omega) = frac{1}{2} (e^{i omega}+e^{-i omega})
$$
$$
sin(omega) = frac{1}{2i} (e^{i omega}-e^{-i omega})
$$
Then the following DTFT Transforms:
$$
delta[n-d] xrightarrow{DTFT} e^{-i omega d}
$$
answered Jan 12 at 21:16
MrCasualityMrCasuality
82
82
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071369%2fdtft-discrete-time-fourier-transform-duality-property-applied-to-cos-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown