If $fin L^1(mathbb{R})$ and $M>0$ is it true that $mathcal{F}left( chi_{[-M,M]}mathcal{F}(f) right)in...
$begingroup$
If $fin L^1(mathbb{R})$ and $M>0$ is it true that $mathcal{F}left( chi_{[-M,M]}mathcal{F}(f) right)in L^1(mathbb{R})$, where $mathcal{F}$ is the Fourier transform? It is pretty clear that $fin L^p(mathbb{R})$ for every $p>1$ (e.g. via Young's convolution inequality) but I can't see if the same holds true for $p=1$.
Any suggestion?
fourier-transform
$endgroup$
add a comment |
$begingroup$
If $fin L^1(mathbb{R})$ and $M>0$ is it true that $mathcal{F}left( chi_{[-M,M]}mathcal{F}(f) right)in L^1(mathbb{R})$, where $mathcal{F}$ is the Fourier transform? It is pretty clear that $fin L^p(mathbb{R})$ for every $p>1$ (e.g. via Young's convolution inequality) but I can't see if the same holds true for $p=1$.
Any suggestion?
fourier-transform
$endgroup$
add a comment |
$begingroup$
If $fin L^1(mathbb{R})$ and $M>0$ is it true that $mathcal{F}left( chi_{[-M,M]}mathcal{F}(f) right)in L^1(mathbb{R})$, where $mathcal{F}$ is the Fourier transform? It is pretty clear that $fin L^p(mathbb{R})$ for every $p>1$ (e.g. via Young's convolution inequality) but I can't see if the same holds true for $p=1$.
Any suggestion?
fourier-transform
$endgroup$
If $fin L^1(mathbb{R})$ and $M>0$ is it true that $mathcal{F}left( chi_{[-M,M]}mathcal{F}(f) right)in L^1(mathbb{R})$, where $mathcal{F}$ is the Fourier transform? It is pretty clear that $fin L^p(mathbb{R})$ for every $p>1$ (e.g. via Young's convolution inequality) but I can't see if the same holds true for $p=1$.
Any suggestion?
fourier-transform
fourier-transform
asked Jan 12 at 20:10
BobBob
1,7311725
1,7311725
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Fix a function $g$ from Schwarz class such that $g = 1$ on $|x| leq 1$, and define $f$ to be the inverse Fourier transform of $g$, namely $f = mathcal{F}^{-1}(g)$. Then $f$ is again from Schwarz class, in particular from $L^1(mathbb{R})$, and taking $M=1$ we get
$$
mathcal{F}(chi_{[-1,1]}mathcal{F}(f)) = mathcal{F}(chi_{[-1,1]}g) = mathcal{F}(chi_{[-1,1]})
$$
which is not $L^1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071329%2fif-f-in-l1-mathbbr-and-m0-is-it-true-that-mathcalf-left-chi-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix a function $g$ from Schwarz class such that $g = 1$ on $|x| leq 1$, and define $f$ to be the inverse Fourier transform of $g$, namely $f = mathcal{F}^{-1}(g)$. Then $f$ is again from Schwarz class, in particular from $L^1(mathbb{R})$, and taking $M=1$ we get
$$
mathcal{F}(chi_{[-1,1]}mathcal{F}(f)) = mathcal{F}(chi_{[-1,1]}g) = mathcal{F}(chi_{[-1,1]})
$$
which is not $L^1$.
$endgroup$
add a comment |
$begingroup$
Fix a function $g$ from Schwarz class such that $g = 1$ on $|x| leq 1$, and define $f$ to be the inverse Fourier transform of $g$, namely $f = mathcal{F}^{-1}(g)$. Then $f$ is again from Schwarz class, in particular from $L^1(mathbb{R})$, and taking $M=1$ we get
$$
mathcal{F}(chi_{[-1,1]}mathcal{F}(f)) = mathcal{F}(chi_{[-1,1]}g) = mathcal{F}(chi_{[-1,1]})
$$
which is not $L^1$.
$endgroup$
add a comment |
$begingroup$
Fix a function $g$ from Schwarz class such that $g = 1$ on $|x| leq 1$, and define $f$ to be the inverse Fourier transform of $g$, namely $f = mathcal{F}^{-1}(g)$. Then $f$ is again from Schwarz class, in particular from $L^1(mathbb{R})$, and taking $M=1$ we get
$$
mathcal{F}(chi_{[-1,1]}mathcal{F}(f)) = mathcal{F}(chi_{[-1,1]}g) = mathcal{F}(chi_{[-1,1]})
$$
which is not $L^1$.
$endgroup$
Fix a function $g$ from Schwarz class such that $g = 1$ on $|x| leq 1$, and define $f$ to be the inverse Fourier transform of $g$, namely $f = mathcal{F}^{-1}(g)$. Then $f$ is again from Schwarz class, in particular from $L^1(mathbb{R})$, and taking $M=1$ we get
$$
mathcal{F}(chi_{[-1,1]}mathcal{F}(f)) = mathcal{F}(chi_{[-1,1]}g) = mathcal{F}(chi_{[-1,1]})
$$
which is not $L^1$.
answered Jan 12 at 21:05
HaykHayk
2,6271214
2,6271214
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071329%2fif-f-in-l1-mathbbr-and-m0-is-it-true-that-mathcalf-left-chi-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown