Prove that triangle $XYZ$ is equilateral
$begingroup$
Let $ABC$ be an acute angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection of the bisectors of the angles $ACB$ and $ABC$ with the line $DE$ and let $Z$ be the midpoint of the side $BC$. Prove that the triangle $XYZ$ is equilateral if and only if $angle A = 60^o$.
I dont know why, but it seems to me that $Delta ADE$ and $Delta XYZ$ are similar (or maybe congruent : ). Is it true? Or no? Please help.
geometry
$endgroup$
add a comment |
$begingroup$
Let $ABC$ be an acute angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection of the bisectors of the angles $ACB$ and $ABC$ with the line $DE$ and let $Z$ be the midpoint of the side $BC$. Prove that the triangle $XYZ$ is equilateral if and only if $angle A = 60^o$.
I dont know why, but it seems to me that $Delta ADE$ and $Delta XYZ$ are similar (or maybe congruent : ). Is it true? Or no? Please help.
geometry
$endgroup$
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51
add a comment |
$begingroup$
Let $ABC$ be an acute angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection of the bisectors of the angles $ACB$ and $ABC$ with the line $DE$ and let $Z$ be the midpoint of the side $BC$. Prove that the triangle $XYZ$ is equilateral if and only if $angle A = 60^o$.
I dont know why, but it seems to me that $Delta ADE$ and $Delta XYZ$ are similar (or maybe congruent : ). Is it true? Or no? Please help.
geometry
$endgroup$
Let $ABC$ be an acute angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection of the bisectors of the angles $ACB$ and $ABC$ with the line $DE$ and let $Z$ be the midpoint of the side $BC$. Prove that the triangle $XYZ$ is equilateral if and only if $angle A = 60^o$.
I dont know why, but it seems to me that $Delta ADE$ and $Delta XYZ$ are similar (or maybe congruent : ). Is it true? Or no? Please help.
geometry
geometry
edited Jan 12 at 16:33
Yellow
asked Jan 12 at 16:23
YellowYellow
16011
16011
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51
add a comment |
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let us first show that $angle BXC=angle BYC=90^circ$.
Notice that triangle $ADE$ is isosceles so $angle AED=90^circ-alpha/2$. It means that $angle DEC=angle XEC=90^circ+alpha/2$. We also know that $angle ECX=gamma/2$. From triangle $XEC$:
$$angle CXE=180^circ-angle XEC-angle ECX=180^circ-(90^circ+alpha/2)-gamma/2=beta/2$$
It follows immediatelly that $angle DXI=180-beta/2$ and $angle DXI+angle DBI=180^circ$. And therefore, quadrialteral $BIXD$ is concyclic. Because of that:
$$angle BXC=angle BXI=angle BDI=90^circtag{1}$$
In a similar way we can show that:
$$angle BYC=90^circtag{2}$$
Because of (1) and (2) points $X$ and $Y$ must be on a circle with diameter BC with center $Z$. So triangle $XYZ$ is isosceles with $ZX=ZY$.
Now:
$$angle XZY=2angle XBY=2(angle XBC-angle IBC)=2(90^circ-gamma/2-beta/2)=alpha$$
So triangle $XYZ$ is equilateral if and only if $alpha=60^circ$.
$endgroup$
add a comment |
$begingroup$
Let
$$A=(0, a)\
B=(-b, 0)\
C=(b, 0)$$
and thus
$$Z=(0, 0)$$
then we get
$$tan(angle ABC)=frac ab$$
and thus
$$tan(frac 12 angle ABC)=frac{a/b}{1+sqrt{1+a^2/b^2}}=frac a{b+sqrt{a^2+b^2}}$$
So we can deduce the center $M$ of the incircle to be
$$M=(0, frac {ab}{b+sqrt{a^2+b^2}})$$
Now define lines $g$ and $h$ by
$$g=overline{AC}: y=-frac ab x+a\
h=overline{ME}: y=frac ba x+frac {ab}{b+sqrt{a^2+b^2}}$$
Equating those will then provide
$$frac {a^2+b^2}{ab}cdot x=frac {ab+asqrt{a^2+b^2}-ab}{b+sqrt{a^2+b^2}}$$
or
$$x=frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}$$
Inserting $x$ into $h$ further provides
$$y=frac{ab^2}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}+frac{ab}{b+sqrt{a^2+b^2}}cdotfrac{sqrt{a^2+b^2}}{sqrt{a^2+b^2}}=frac{ab}{sqrt{a^2+b^2}}$$
Thus we have
$$E=(frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})$$
Now define line $k$ to be
$$k=overline{BM}: y=frac a{b+sqrt{a^2+b^2}} (x+b)$$
and intersecting that with $overline{DE}$, i.e. equating it with the $y$ value of $E$, provides
$$frac a{b+sqrt{a^2+b^2}} (x+b)=frac{ab}{sqrt{a^2+b^2}}\
x+b=frac{b(b+sqrt{a^2+b^2})}{sqrt{a^2+b^2}}=frac{b^2}{sqrt{a^2+b^2}}+b\
x=frac{b^2}{sqrt{a^2+b^2}}$$
Thus we have calculated $Y$ to be
$$Y=(frac{b^2}{sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})=frac b{sqrt{a^2+b^2}} (b, a)$$
and this finally proves your conjecture:
$$overline{AB}paralleloverline{ZY}$$
q.e. $ABC$ and $XYZ$ are indeed similar triangles, provided $ABC$ was an isoceles triangle, as asumed by the chosen coordinatisation.
--- rk
$endgroup$
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071076%2fprove-that-triangle-xyz-is-equilateral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us first show that $angle BXC=angle BYC=90^circ$.
Notice that triangle $ADE$ is isosceles so $angle AED=90^circ-alpha/2$. It means that $angle DEC=angle XEC=90^circ+alpha/2$. We also know that $angle ECX=gamma/2$. From triangle $XEC$:
$$angle CXE=180^circ-angle XEC-angle ECX=180^circ-(90^circ+alpha/2)-gamma/2=beta/2$$
It follows immediatelly that $angle DXI=180-beta/2$ and $angle DXI+angle DBI=180^circ$. And therefore, quadrialteral $BIXD$ is concyclic. Because of that:
$$angle BXC=angle BXI=angle BDI=90^circtag{1}$$
In a similar way we can show that:
$$angle BYC=90^circtag{2}$$
Because of (1) and (2) points $X$ and $Y$ must be on a circle with diameter BC with center $Z$. So triangle $XYZ$ is isosceles with $ZX=ZY$.
Now:
$$angle XZY=2angle XBY=2(angle XBC-angle IBC)=2(90^circ-gamma/2-beta/2)=alpha$$
So triangle $XYZ$ is equilateral if and only if $alpha=60^circ$.
$endgroup$
add a comment |
$begingroup$
Let us first show that $angle BXC=angle BYC=90^circ$.
Notice that triangle $ADE$ is isosceles so $angle AED=90^circ-alpha/2$. It means that $angle DEC=angle XEC=90^circ+alpha/2$. We also know that $angle ECX=gamma/2$. From triangle $XEC$:
$$angle CXE=180^circ-angle XEC-angle ECX=180^circ-(90^circ+alpha/2)-gamma/2=beta/2$$
It follows immediatelly that $angle DXI=180-beta/2$ and $angle DXI+angle DBI=180^circ$. And therefore, quadrialteral $BIXD$ is concyclic. Because of that:
$$angle BXC=angle BXI=angle BDI=90^circtag{1}$$
In a similar way we can show that:
$$angle BYC=90^circtag{2}$$
Because of (1) and (2) points $X$ and $Y$ must be on a circle with diameter BC with center $Z$. So triangle $XYZ$ is isosceles with $ZX=ZY$.
Now:
$$angle XZY=2angle XBY=2(angle XBC-angle IBC)=2(90^circ-gamma/2-beta/2)=alpha$$
So triangle $XYZ$ is equilateral if and only if $alpha=60^circ$.
$endgroup$
add a comment |
$begingroup$
Let us first show that $angle BXC=angle BYC=90^circ$.
Notice that triangle $ADE$ is isosceles so $angle AED=90^circ-alpha/2$. It means that $angle DEC=angle XEC=90^circ+alpha/2$. We also know that $angle ECX=gamma/2$. From triangle $XEC$:
$$angle CXE=180^circ-angle XEC-angle ECX=180^circ-(90^circ+alpha/2)-gamma/2=beta/2$$
It follows immediatelly that $angle DXI=180-beta/2$ and $angle DXI+angle DBI=180^circ$. And therefore, quadrialteral $BIXD$ is concyclic. Because of that:
$$angle BXC=angle BXI=angle BDI=90^circtag{1}$$
In a similar way we can show that:
$$angle BYC=90^circtag{2}$$
Because of (1) and (2) points $X$ and $Y$ must be on a circle with diameter BC with center $Z$. So triangle $XYZ$ is isosceles with $ZX=ZY$.
Now:
$$angle XZY=2angle XBY=2(angle XBC-angle IBC)=2(90^circ-gamma/2-beta/2)=alpha$$
So triangle $XYZ$ is equilateral if and only if $alpha=60^circ$.
$endgroup$
Let us first show that $angle BXC=angle BYC=90^circ$.
Notice that triangle $ADE$ is isosceles so $angle AED=90^circ-alpha/2$. It means that $angle DEC=angle XEC=90^circ+alpha/2$. We also know that $angle ECX=gamma/2$. From triangle $XEC$:
$$angle CXE=180^circ-angle XEC-angle ECX=180^circ-(90^circ+alpha/2)-gamma/2=beta/2$$
It follows immediatelly that $angle DXI=180-beta/2$ and $angle DXI+angle DBI=180^circ$. And therefore, quadrialteral $BIXD$ is concyclic. Because of that:
$$angle BXC=angle BXI=angle BDI=90^circtag{1}$$
In a similar way we can show that:
$$angle BYC=90^circtag{2}$$
Because of (1) and (2) points $X$ and $Y$ must be on a circle with diameter BC with center $Z$. So triangle $XYZ$ is isosceles with $ZX=ZY$.
Now:
$$angle XZY=2angle XBY=2(angle XBC-angle IBC)=2(90^circ-gamma/2-beta/2)=alpha$$
So triangle $XYZ$ is equilateral if and only if $alpha=60^circ$.
edited Jan 12 at 19:37
answered Jan 12 at 19:32
OldboyOldboy
8,67911036
8,67911036
add a comment |
add a comment |
$begingroup$
Let
$$A=(0, a)\
B=(-b, 0)\
C=(b, 0)$$
and thus
$$Z=(0, 0)$$
then we get
$$tan(angle ABC)=frac ab$$
and thus
$$tan(frac 12 angle ABC)=frac{a/b}{1+sqrt{1+a^2/b^2}}=frac a{b+sqrt{a^2+b^2}}$$
So we can deduce the center $M$ of the incircle to be
$$M=(0, frac {ab}{b+sqrt{a^2+b^2}})$$
Now define lines $g$ and $h$ by
$$g=overline{AC}: y=-frac ab x+a\
h=overline{ME}: y=frac ba x+frac {ab}{b+sqrt{a^2+b^2}}$$
Equating those will then provide
$$frac {a^2+b^2}{ab}cdot x=frac {ab+asqrt{a^2+b^2}-ab}{b+sqrt{a^2+b^2}}$$
or
$$x=frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}$$
Inserting $x$ into $h$ further provides
$$y=frac{ab^2}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}+frac{ab}{b+sqrt{a^2+b^2}}cdotfrac{sqrt{a^2+b^2}}{sqrt{a^2+b^2}}=frac{ab}{sqrt{a^2+b^2}}$$
Thus we have
$$E=(frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})$$
Now define line $k$ to be
$$k=overline{BM}: y=frac a{b+sqrt{a^2+b^2}} (x+b)$$
and intersecting that with $overline{DE}$, i.e. equating it with the $y$ value of $E$, provides
$$frac a{b+sqrt{a^2+b^2}} (x+b)=frac{ab}{sqrt{a^2+b^2}}\
x+b=frac{b(b+sqrt{a^2+b^2})}{sqrt{a^2+b^2}}=frac{b^2}{sqrt{a^2+b^2}}+b\
x=frac{b^2}{sqrt{a^2+b^2}}$$
Thus we have calculated $Y$ to be
$$Y=(frac{b^2}{sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})=frac b{sqrt{a^2+b^2}} (b, a)$$
and this finally proves your conjecture:
$$overline{AB}paralleloverline{ZY}$$
q.e. $ABC$ and $XYZ$ are indeed similar triangles, provided $ABC$ was an isoceles triangle, as asumed by the chosen coordinatisation.
--- rk
$endgroup$
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
add a comment |
$begingroup$
Let
$$A=(0, a)\
B=(-b, 0)\
C=(b, 0)$$
and thus
$$Z=(0, 0)$$
then we get
$$tan(angle ABC)=frac ab$$
and thus
$$tan(frac 12 angle ABC)=frac{a/b}{1+sqrt{1+a^2/b^2}}=frac a{b+sqrt{a^2+b^2}}$$
So we can deduce the center $M$ of the incircle to be
$$M=(0, frac {ab}{b+sqrt{a^2+b^2}})$$
Now define lines $g$ and $h$ by
$$g=overline{AC}: y=-frac ab x+a\
h=overline{ME}: y=frac ba x+frac {ab}{b+sqrt{a^2+b^2}}$$
Equating those will then provide
$$frac {a^2+b^2}{ab}cdot x=frac {ab+asqrt{a^2+b^2}-ab}{b+sqrt{a^2+b^2}}$$
or
$$x=frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}$$
Inserting $x$ into $h$ further provides
$$y=frac{ab^2}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}+frac{ab}{b+sqrt{a^2+b^2}}cdotfrac{sqrt{a^2+b^2}}{sqrt{a^2+b^2}}=frac{ab}{sqrt{a^2+b^2}}$$
Thus we have
$$E=(frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})$$
Now define line $k$ to be
$$k=overline{BM}: y=frac a{b+sqrt{a^2+b^2}} (x+b)$$
and intersecting that with $overline{DE}$, i.e. equating it with the $y$ value of $E$, provides
$$frac a{b+sqrt{a^2+b^2}} (x+b)=frac{ab}{sqrt{a^2+b^2}}\
x+b=frac{b(b+sqrt{a^2+b^2})}{sqrt{a^2+b^2}}=frac{b^2}{sqrt{a^2+b^2}}+b\
x=frac{b^2}{sqrt{a^2+b^2}}$$
Thus we have calculated $Y$ to be
$$Y=(frac{b^2}{sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})=frac b{sqrt{a^2+b^2}} (b, a)$$
and this finally proves your conjecture:
$$overline{AB}paralleloverline{ZY}$$
q.e. $ABC$ and $XYZ$ are indeed similar triangles, provided $ABC$ was an isoceles triangle, as asumed by the chosen coordinatisation.
--- rk
$endgroup$
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
add a comment |
$begingroup$
Let
$$A=(0, a)\
B=(-b, 0)\
C=(b, 0)$$
and thus
$$Z=(0, 0)$$
then we get
$$tan(angle ABC)=frac ab$$
and thus
$$tan(frac 12 angle ABC)=frac{a/b}{1+sqrt{1+a^2/b^2}}=frac a{b+sqrt{a^2+b^2}}$$
So we can deduce the center $M$ of the incircle to be
$$M=(0, frac {ab}{b+sqrt{a^2+b^2}})$$
Now define lines $g$ and $h$ by
$$g=overline{AC}: y=-frac ab x+a\
h=overline{ME}: y=frac ba x+frac {ab}{b+sqrt{a^2+b^2}}$$
Equating those will then provide
$$frac {a^2+b^2}{ab}cdot x=frac {ab+asqrt{a^2+b^2}-ab}{b+sqrt{a^2+b^2}}$$
or
$$x=frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}$$
Inserting $x$ into $h$ further provides
$$y=frac{ab^2}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}+frac{ab}{b+sqrt{a^2+b^2}}cdotfrac{sqrt{a^2+b^2}}{sqrt{a^2+b^2}}=frac{ab}{sqrt{a^2+b^2}}$$
Thus we have
$$E=(frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})$$
Now define line $k$ to be
$$k=overline{BM}: y=frac a{b+sqrt{a^2+b^2}} (x+b)$$
and intersecting that with $overline{DE}$, i.e. equating it with the $y$ value of $E$, provides
$$frac a{b+sqrt{a^2+b^2}} (x+b)=frac{ab}{sqrt{a^2+b^2}}\
x+b=frac{b(b+sqrt{a^2+b^2})}{sqrt{a^2+b^2}}=frac{b^2}{sqrt{a^2+b^2}}+b\
x=frac{b^2}{sqrt{a^2+b^2}}$$
Thus we have calculated $Y$ to be
$$Y=(frac{b^2}{sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})=frac b{sqrt{a^2+b^2}} (b, a)$$
and this finally proves your conjecture:
$$overline{AB}paralleloverline{ZY}$$
q.e. $ABC$ and $XYZ$ are indeed similar triangles, provided $ABC$ was an isoceles triangle, as asumed by the chosen coordinatisation.
--- rk
$endgroup$
Let
$$A=(0, a)\
B=(-b, 0)\
C=(b, 0)$$
and thus
$$Z=(0, 0)$$
then we get
$$tan(angle ABC)=frac ab$$
and thus
$$tan(frac 12 angle ABC)=frac{a/b}{1+sqrt{1+a^2/b^2}}=frac a{b+sqrt{a^2+b^2}}$$
So we can deduce the center $M$ of the incircle to be
$$M=(0, frac {ab}{b+sqrt{a^2+b^2}})$$
Now define lines $g$ and $h$ by
$$g=overline{AC}: y=-frac ab x+a\
h=overline{ME}: y=frac ba x+frac {ab}{b+sqrt{a^2+b^2}}$$
Equating those will then provide
$$frac {a^2+b^2}{ab}cdot x=frac {ab+asqrt{a^2+b^2}-ab}{b+sqrt{a^2+b^2}}$$
or
$$x=frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}$$
Inserting $x$ into $h$ further provides
$$y=frac{ab^2}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}+frac{ab}{b+sqrt{a^2+b^2}}cdotfrac{sqrt{a^2+b^2}}{sqrt{a^2+b^2}}=frac{ab}{sqrt{a^2+b^2}}$$
Thus we have
$$E=(frac{a^2b}{(b+sqrt{a^2+b^2}) sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})$$
Now define line $k$ to be
$$k=overline{BM}: y=frac a{b+sqrt{a^2+b^2}} (x+b)$$
and intersecting that with $overline{DE}$, i.e. equating it with the $y$ value of $E$, provides
$$frac a{b+sqrt{a^2+b^2}} (x+b)=frac{ab}{sqrt{a^2+b^2}}\
x+b=frac{b(b+sqrt{a^2+b^2})}{sqrt{a^2+b^2}}=frac{b^2}{sqrt{a^2+b^2}}+b\
x=frac{b^2}{sqrt{a^2+b^2}}$$
Thus we have calculated $Y$ to be
$$Y=(frac{b^2}{sqrt{a^2+b^2}}, frac{ab}{sqrt{a^2+b^2}})=frac b{sqrt{a^2+b^2}} (b, a)$$
and this finally proves your conjecture:
$$overline{AB}paralleloverline{ZY}$$
q.e. $ABC$ and $XYZ$ are indeed similar triangles, provided $ABC$ was an isoceles triangle, as asumed by the chosen coordinatisation.
--- rk
edited Jan 12 at 20:01
answered Jan 12 at 19:55
Dr. Richard KlitzingDr. Richard Klitzing
1,78016
1,78016
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
add a comment |
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
$begingroup$
Thank you for the solution, but I like pure geometric proofs (I rarely prefer trig over pure geometry, but at times I’m forced to use trig) more than any other...
$endgroup$
– Yellow
Jan 16 at 17:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071076%2fprove-that-triangle-xyz-is-equilateral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
A little playing around with Geogebra seems to confirm your intuition about similar triangles. Perhaps someone can give a hint toward a proof.
$endgroup$
– David K
Jan 12 at 17:51