Three bases, one linear map, find vector $x$
$begingroup$
Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.
$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$
$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$
Find $x$ in $D$ with respect to $x_1$ and $x_2$.
linear-algebra linear-transformations change-of-basis
$endgroup$
add a comment |
$begingroup$
Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.
$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$
$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$
Find $x$ in $D$ with respect to $x_1$ and $x_2$.
linear-algebra linear-transformations change-of-basis
$endgroup$
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10
add a comment |
$begingroup$
Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.
$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$
$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$
Find $x$ in $D$ with respect to $x_1$ and $x_2$.
linear-algebra linear-transformations change-of-basis
$endgroup$
Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.
$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$
$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$
Find $x$ in $D$ with respect to $x_1$ and $x_2$.
linear-algebra linear-transformations change-of-basis
linear-algebra linear-transformations change-of-basis
edited Jan 9 at 12:03
Jan Lhoták
asked Jan 9 at 11:24
Jan LhotákJan Lhoták
275
275
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10
add a comment |
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$
$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.
$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067341%2fthree-bases-one-linear-map-find-vector-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$
$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.
$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$
$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.
$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$
$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.
$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$
$endgroup$
$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$
$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.
$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$
answered Jan 9 at 12:10
Shubham JohriShubham Johri
5,189718
5,189718
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067341%2fthree-bases-one-linear-map-find-vector-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28
$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32
$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37
$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04
$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10