Three bases, one linear map, find vector $x$












0












$begingroup$


Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.



$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$



$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$



Find $x$ in $D$ with respect to $x_1$ and $x_2$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
    $endgroup$
    – Tito Eliatron
    Jan 9 at 11:28










  • $begingroup$
    the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:32










  • $begingroup$
    Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:37












  • $begingroup$
    Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 12:04












  • $begingroup$
    Yes @JanLhoták, correct
    $endgroup$
    – Shubham Johri
    Jan 9 at 12:10
















0












$begingroup$


Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.



$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$



$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$



Find $x$ in $D$ with respect to $x_1$ and $x_2$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
    $endgroup$
    – Tito Eliatron
    Jan 9 at 11:28










  • $begingroup$
    the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:32










  • $begingroup$
    Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:37












  • $begingroup$
    Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 12:04












  • $begingroup$
    Yes @JanLhoták, correct
    $endgroup$
    – Shubham Johri
    Jan 9 at 12:10














0












0








0





$begingroup$


Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.



$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$



$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$



Find $x$ in $D$ with respect to $x_1$ and $x_2$.










share|cite|improve this question











$endgroup$




Given three bases $B, C$ and $D$ and linear map $f:Bbb R^2toBbb R^2$, and $x$ from $Bbb R^2$. We also know that $[x]_B=(x_1,x_2)^T$.



$$[f]_{Bto C}=begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}$$



$$[f]_{Dto C}=begin{bmatrix}1 & 3 \-1 & 5 end{bmatrix}$$



Find $x$ in $D$ with respect to $x_1$ and $x_2$.







linear-algebra linear-transformations change-of-basis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 12:03







Jan Lhoták

















asked Jan 9 at 11:24









Jan LhotákJan Lhoták

275




275












  • $begingroup$
    "from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
    $endgroup$
    – Tito Eliatron
    Jan 9 at 11:28










  • $begingroup$
    the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:32










  • $begingroup$
    Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:37












  • $begingroup$
    Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 12:04












  • $begingroup$
    Yes @JanLhoták, correct
    $endgroup$
    – Shubham Johri
    Jan 9 at 12:10


















  • $begingroup$
    "from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
    $endgroup$
    – Tito Eliatron
    Jan 9 at 11:28










  • $begingroup$
    the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:32










  • $begingroup$
    Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
    $endgroup$
    – Jan Lhoták
    Jan 9 at 11:37












  • $begingroup$
    Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
    $endgroup$
    – Jan Lhoták
    Jan 9 at 12:04












  • $begingroup$
    Yes @JanLhoták, correct
    $endgroup$
    – Shubham Johri
    Jan 9 at 12:10
















$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28




$begingroup$
"from $B$ to $D$" is equivalent to "from $B$ to $C$ AND from $C$ to $D$". You know how to go from $B$ to $C$. You also know how to go from $D$ to $C$... so, ¿How to do the inverse walk?
$endgroup$
– Tito Eliatron
Jan 9 at 11:28












$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32




$begingroup$
the inverse is 1/8 begin{bmatrix}5 & -3 \1 & 1 end{bmatrix} . But is f necessarily identity?
$endgroup$
– Jan Lhoták
Jan 9 at 11:32












$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37






$begingroup$
Because if f is identity you can just generate x in D by multiplying [f]C→D [f]B→C x in B. Which would be begin{bmatrix}1/8 & 3/2 \5/8 & 1/2 end{bmatrix} -> (1/8x1 + 3/2x2; 5/8x1 + 1/2x2)T.
$endgroup$
– Jan Lhoták
Jan 9 at 11:37














$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04






$begingroup$
Ok is the answer: $[x]_D=(1/8 x_1 + 3/2 x_2 ,5/8 x_1 + 1/2 x_2)^T$ ?
$endgroup$
– Jan Lhoták
Jan 9 at 12:04














$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10




$begingroup$
Yes @JanLhoták, correct
$endgroup$
– Shubham Johri
Jan 9 at 12:10










1 Answer
1






active

oldest

votes


















0












$begingroup$

$$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$



$v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.



$$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067341%2fthree-bases-one-linear-map-find-vector-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$



    $v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.



    $$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$



      $v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.



      $$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$



        $v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.



        $$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$






        share|cite|improve this answer









        $endgroup$



        $$[f]_{Dto C}=begin{bmatrix}1&3\-1&5end{bmatrix}implies [f^{-1}]_{Cto D}=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}$$



        $v=[f]_{Bto C}x$ gives you the image of $x$ under $f$ with respect to basis $C$. $[f^{-1}]_{Cto D}v$ gives you the vector in $Bbb R^2$ with respect to basis $D$ whose image under $f$ is $v$ with respect to basis $C$; in other words, the representation of $x$ in $D$.



        $$[x]_D=begin{bmatrix}1&3\-1&5end{bmatrix}^{-1}begin{bmatrix}2 & 3 \3 & 1 end{bmatrix}[x]_B=frac18begin{bmatrix}1&12\5&4end{bmatrix}begin{bmatrix}x_1\x_2end{bmatrix}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 9 at 12:10









        Shubham JohriShubham Johri

        5,189718




        5,189718






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067341%2fthree-bases-one-linear-map-find-vector-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅