On largest box expected size not containing integer vector solutions
$begingroup$
I am trying to understand the largest cube in $Bbb Z^8$ around origin not containing integer vector $(a,b,c,d,a',b',c',d')$ solutions to $$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$ where $A,B,C,D,E,F$ are pairwise coprime where $$n<A,B,C,D,E,F<2n$$ $$n/8<|A-B|,|C-D|,|A-C|,|A-D|,|B-C|,|B-D|,|A-E|,|B-E|,dots,|E-F|<n/4$$ holds?
Is the box $alphacdot n^{3/7}$ in length around origin for some constant $0<alpha $ with probability $1-o(1)$? That is a vector $(a,b,c,d,a',b',c',d')inBbb Z^8$ with $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ exists but with probability $1-o(1)$ no much smaller one exists?
This is where I get the $3/7$ value.
$$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$
$$implies E(aBD+bBC+cAD+dAC)=-F(a'BD+b'BC+c'AD+d'AC)$$
which gives
$$a'BD+b'BC+c'AD+d'AC=ell E$$
$$aBD+bBC+cAD+dAC=-ell F$$
If size of $ell$ is $n^eta$ then size of $ell E$ is size of $a'BD+b'BC+c'AD+d'AC$ is $n^{2+gamma}$. We have $n^{4gamma}$ values in $a'b'c'd'$ and $n^{4gamma}$ values in $abcd$ and we want to hit $ell E$ and $ell F$ (a total of $2n^{eta}$ possibilities) of a total of $n^{2(2+gamma)}$ possibilities. The expected intersection is
$$frac{n^{4gamma}n^{4gamma}2n^{eta}}{n^{2(2+gamma)}}=frac{2n^{6gamma+eta}}{n^4}.$$
We also know roughly $2+gamma=1+eta$ by equating sizes which implies $eta-gamma=1$. Thus intersection is $$frac{2n^{6gamma+eta}}{n^4}asympfrac{2n^{6gamma+gamma+1}}{n^4}$$ which gives $gamma>frac37$ and thus we expect $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ to hold.
linear-algebra probability diophantine-equations integers linear-diophantine-equations
$endgroup$
add a comment |
$begingroup$
I am trying to understand the largest cube in $Bbb Z^8$ around origin not containing integer vector $(a,b,c,d,a',b',c',d')$ solutions to $$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$ where $A,B,C,D,E,F$ are pairwise coprime where $$n<A,B,C,D,E,F<2n$$ $$n/8<|A-B|,|C-D|,|A-C|,|A-D|,|B-C|,|B-D|,|A-E|,|B-E|,dots,|E-F|<n/4$$ holds?
Is the box $alphacdot n^{3/7}$ in length around origin for some constant $0<alpha $ with probability $1-o(1)$? That is a vector $(a,b,c,d,a',b',c',d')inBbb Z^8$ with $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ exists but with probability $1-o(1)$ no much smaller one exists?
This is where I get the $3/7$ value.
$$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$
$$implies E(aBD+bBC+cAD+dAC)=-F(a'BD+b'BC+c'AD+d'AC)$$
which gives
$$a'BD+b'BC+c'AD+d'AC=ell E$$
$$aBD+bBC+cAD+dAC=-ell F$$
If size of $ell$ is $n^eta$ then size of $ell E$ is size of $a'BD+b'BC+c'AD+d'AC$ is $n^{2+gamma}$. We have $n^{4gamma}$ values in $a'b'c'd'$ and $n^{4gamma}$ values in $abcd$ and we want to hit $ell E$ and $ell F$ (a total of $2n^{eta}$ possibilities) of a total of $n^{2(2+gamma)}$ possibilities. The expected intersection is
$$frac{n^{4gamma}n^{4gamma}2n^{eta}}{n^{2(2+gamma)}}=frac{2n^{6gamma+eta}}{n^4}.$$
We also know roughly $2+gamma=1+eta$ by equating sizes which implies $eta-gamma=1$. Thus intersection is $$frac{2n^{6gamma+eta}}{n^4}asympfrac{2n^{6gamma+gamma+1}}{n^4}$$ which gives $gamma>frac37$ and thus we expect $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ to hold.
linear-algebra probability diophantine-equations integers linear-diophantine-equations
$endgroup$
add a comment |
$begingroup$
I am trying to understand the largest cube in $Bbb Z^8$ around origin not containing integer vector $(a,b,c,d,a',b',c',d')$ solutions to $$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$ where $A,B,C,D,E,F$ are pairwise coprime where $$n<A,B,C,D,E,F<2n$$ $$n/8<|A-B|,|C-D|,|A-C|,|A-D|,|B-C|,|B-D|,|A-E|,|B-E|,dots,|E-F|<n/4$$ holds?
Is the box $alphacdot n^{3/7}$ in length around origin for some constant $0<alpha $ with probability $1-o(1)$? That is a vector $(a,b,c,d,a',b',c',d')inBbb Z^8$ with $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ exists but with probability $1-o(1)$ no much smaller one exists?
This is where I get the $3/7$ value.
$$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$
$$implies E(aBD+bBC+cAD+dAC)=-F(a'BD+b'BC+c'AD+d'AC)$$
which gives
$$a'BD+b'BC+c'AD+d'AC=ell E$$
$$aBD+bBC+cAD+dAC=-ell F$$
If size of $ell$ is $n^eta$ then size of $ell E$ is size of $a'BD+b'BC+c'AD+d'AC$ is $n^{2+gamma}$. We have $n^{4gamma}$ values in $a'b'c'd'$ and $n^{4gamma}$ values in $abcd$ and we want to hit $ell E$ and $ell F$ (a total of $2n^{eta}$ possibilities) of a total of $n^{2(2+gamma)}$ possibilities. The expected intersection is
$$frac{n^{4gamma}n^{4gamma}2n^{eta}}{n^{2(2+gamma)}}=frac{2n^{6gamma+eta}}{n^4}.$$
We also know roughly $2+gamma=1+eta$ by equating sizes which implies $eta-gamma=1$. Thus intersection is $$frac{2n^{6gamma+eta}}{n^4}asympfrac{2n^{6gamma+gamma+1}}{n^4}$$ which gives $gamma>frac37$ and thus we expect $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ to hold.
linear-algebra probability diophantine-equations integers linear-diophantine-equations
$endgroup$
I am trying to understand the largest cube in $Bbb Z^8$ around origin not containing integer vector $(a,b,c,d,a',b',c',d')$ solutions to $$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$ where $A,B,C,D,E,F$ are pairwise coprime where $$n<A,B,C,D,E,F<2n$$ $$n/8<|A-B|,|C-D|,|A-C|,|A-D|,|B-C|,|B-D|,|A-E|,|B-E|,dots,|E-F|<n/4$$ holds?
Is the box $alphacdot n^{3/7}$ in length around origin for some constant $0<alpha $ with probability $1-o(1)$? That is a vector $(a,b,c,d,a',b',c',d')inBbb Z^8$ with $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ exists but with probability $1-o(1)$ no much smaller one exists?
This is where I get the $3/7$ value.
$$aBDE+bBCE+cADE+dACE+a'BDF+b'BCF+c'ADF+d'ACF=0$$
$$implies E(aBD+bBC+cAD+dAC)=-F(a'BD+b'BC+c'AD+d'AC)$$
which gives
$$a'BD+b'BC+c'AD+d'AC=ell E$$
$$aBD+bBC+cAD+dAC=-ell F$$
If size of $ell$ is $n^eta$ then size of $ell E$ is size of $a'BD+b'BC+c'AD+d'AC$ is $n^{2+gamma}$. We have $n^{4gamma}$ values in $a'b'c'd'$ and $n^{4gamma}$ values in $abcd$ and we want to hit $ell E$ and $ell F$ (a total of $2n^{eta}$ possibilities) of a total of $n^{2(2+gamma)}$ possibilities. The expected intersection is
$$frac{n^{4gamma}n^{4gamma}2n^{eta}}{n^{2(2+gamma)}}=frac{2n^{6gamma+eta}}{n^4}.$$
We also know roughly $2+gamma=1+eta$ by equating sizes which implies $eta-gamma=1$. Thus intersection is $$frac{2n^{6gamma+eta}}{n^4}asympfrac{2n^{6gamma+gamma+1}}{n^4}$$ which gives $gamma>frac37$ and thus we expect $max(|a|,|b|,|c|,|d|,|a'|,|b'|,|c'|,|d'|)asymp n^{3/7}$ to hold.
linear-algebra probability diophantine-equations integers linear-diophantine-equations
linear-algebra probability diophantine-equations integers linear-diophantine-equations
edited Jan 8 at 16:23
Brout
asked Jan 8 at 16:12
BroutBrout
2,5591431
2,5591431
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066365%2fon-largest-box-expected-size-not-containing-integer-vector-solutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066365%2fon-largest-box-expected-size-not-containing-integer-vector-solutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown