Limit $limlimits_{x to 0^{+}}frac{x^{cos x}}{x}$
$begingroup$
I need to calculate the limit $limlimits_{x to 0^{+}}frac{x^{cos x}}{x}$.
I tried to form it as $limlimits_{x to 0^{+}}frac{e^{ln (x)cdot cos x}}{x} $ and do L'Hôpital's rule but it doesn't solve it.
limits
$endgroup$
add a comment |
$begingroup$
I need to calculate the limit $limlimits_{x to 0^{+}}frac{x^{cos x}}{x}$.
I tried to form it as $limlimits_{x to 0^{+}}frac{e^{ln (x)cdot cos x}}{x} $ and do L'Hôpital's rule but it doesn't solve it.
limits
$endgroup$
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
2
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23
add a comment |
$begingroup$
I need to calculate the limit $limlimits_{x to 0^{+}}frac{x^{cos x}}{x}$.
I tried to form it as $limlimits_{x to 0^{+}}frac{e^{ln (x)cdot cos x}}{x} $ and do L'Hôpital's rule but it doesn't solve it.
limits
$endgroup$
I need to calculate the limit $limlimits_{x to 0^{+}}frac{x^{cos x}}{x}$.
I tried to form it as $limlimits_{x to 0^{+}}frac{e^{ln (x)cdot cos x}}{x} $ and do L'Hôpital's rule but it doesn't solve it.
limits
limits
edited Jan 8 at 16:50
Did
248k23224463
248k23224463
asked Jan 8 at 16:15
violettagoldviolettagold
266
266
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
2
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23
add a comment |
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
2
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
2
2
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
We have :
$$frac{x^{cos x}}{x} = x^{cos x -1} = e^{ln x (cos x -1)}$$
Now using the fact that in a neighborhood of $0$ we have :
$$cos x - 1 = -frac{x^2}{2} + o(x^2)$$
Then we can easily deduce that :
$$ln x cdot (cos x -1) to 0$$
Hence the desired limit is $1$.
$endgroup$
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
add a comment |
$begingroup$
$$begin{align}
lim_{xto0^+}x^{cos x-1}&=lim_{xto0^+}e^{ln x(cos x-1)}\
&=expleft(lim_{xto0^+}frac{cos x-1}{dfrac1{ln x}}right)\
&=expleft(lim_{xto0^+}frac{-sin x}{-dfrac1{x(ln x)^2}}right)\
&=expleft(lim_{xto0^+}(xln x)(sin xln x)right)=e^0
end{align}$$
$endgroup$
add a comment |
$begingroup$
$cos x= 1+o(1)$ when $xto 0$ (first order of Taylor expansion). Then
$$frac{x^{cos x}}x =frac{x^{1+o(1)}}x=frac{xcdot x^{o(1)}}x=x^{o(1)}longrightarrow_{xto0}1$$
$endgroup$
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
add a comment |
$begingroup$
You may also use the following facts:
- $lim_{xto 0}frac{cos x-1}{x} = cos'(0) = -sin(0) = 0$
- $lim_{xto 0}xln x = 0$
So, you get
$$ln frac{x^{cos x}}{x} = (cos x - 1)cdot ln x = frac{(cos x - 1)}{x}cdot x ln x stackrel{xto 0^+}{longrightarrow}0cdot 0 = 0$$
Hence, $limlimits_{x to 0^{+}}frac{x^{cos x}}{x} = e^0 = 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066368%2flimit-lim-limits-x-to-0-fracx-cos-xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have :
$$frac{x^{cos x}}{x} = x^{cos x -1} = e^{ln x (cos x -1)}$$
Now using the fact that in a neighborhood of $0$ we have :
$$cos x - 1 = -frac{x^2}{2} + o(x^2)$$
Then we can easily deduce that :
$$ln x cdot (cos x -1) to 0$$
Hence the desired limit is $1$.
$endgroup$
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
add a comment |
$begingroup$
We have :
$$frac{x^{cos x}}{x} = x^{cos x -1} = e^{ln x (cos x -1)}$$
Now using the fact that in a neighborhood of $0$ we have :
$$cos x - 1 = -frac{x^2}{2} + o(x^2)$$
Then we can easily deduce that :
$$ln x cdot (cos x -1) to 0$$
Hence the desired limit is $1$.
$endgroup$
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
add a comment |
$begingroup$
We have :
$$frac{x^{cos x}}{x} = x^{cos x -1} = e^{ln x (cos x -1)}$$
Now using the fact that in a neighborhood of $0$ we have :
$$cos x - 1 = -frac{x^2}{2} + o(x^2)$$
Then we can easily deduce that :
$$ln x cdot (cos x -1) to 0$$
Hence the desired limit is $1$.
$endgroup$
We have :
$$frac{x^{cos x}}{x} = x^{cos x -1} = e^{ln x (cos x -1)}$$
Now using the fact that in a neighborhood of $0$ we have :
$$cos x - 1 = -frac{x^2}{2} + o(x^2)$$
Then we can easily deduce that :
$$ln x cdot (cos x -1) to 0$$
Hence the desired limit is $1$.
answered Jan 8 at 16:30
ThinkingThinking
1,13916
1,13916
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
add a comment |
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
$begingroup$
Thank you very much.
$endgroup$
– violettagold
Jan 8 at 16:48
add a comment |
$begingroup$
$$begin{align}
lim_{xto0^+}x^{cos x-1}&=lim_{xto0^+}e^{ln x(cos x-1)}\
&=expleft(lim_{xto0^+}frac{cos x-1}{dfrac1{ln x}}right)\
&=expleft(lim_{xto0^+}frac{-sin x}{-dfrac1{x(ln x)^2}}right)\
&=expleft(lim_{xto0^+}(xln x)(sin xln x)right)=e^0
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
lim_{xto0^+}x^{cos x-1}&=lim_{xto0^+}e^{ln x(cos x-1)}\
&=expleft(lim_{xto0^+}frac{cos x-1}{dfrac1{ln x}}right)\
&=expleft(lim_{xto0^+}frac{-sin x}{-dfrac1{x(ln x)^2}}right)\
&=expleft(lim_{xto0^+}(xln x)(sin xln x)right)=e^0
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
lim_{xto0^+}x^{cos x-1}&=lim_{xto0^+}e^{ln x(cos x-1)}\
&=expleft(lim_{xto0^+}frac{cos x-1}{dfrac1{ln x}}right)\
&=expleft(lim_{xto0^+}frac{-sin x}{-dfrac1{x(ln x)^2}}right)\
&=expleft(lim_{xto0^+}(xln x)(sin xln x)right)=e^0
end{align}$$
$endgroup$
$$begin{align}
lim_{xto0^+}x^{cos x-1}&=lim_{xto0^+}e^{ln x(cos x-1)}\
&=expleft(lim_{xto0^+}frac{cos x-1}{dfrac1{ln x}}right)\
&=expleft(lim_{xto0^+}frac{-sin x}{-dfrac1{x(ln x)^2}}right)\
&=expleft(lim_{xto0^+}(xln x)(sin xln x)right)=e^0
end{align}$$
answered Jan 8 at 16:29
ajotatxeajotatxe
53.8k23990
53.8k23990
add a comment |
add a comment |
$begingroup$
$cos x= 1+o(1)$ when $xto 0$ (first order of Taylor expansion). Then
$$frac{x^{cos x}}x =frac{x^{1+o(1)}}x=frac{xcdot x^{o(1)}}x=x^{o(1)}longrightarrow_{xto0}1$$
$endgroup$
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
add a comment |
$begingroup$
$cos x= 1+o(1)$ when $xto 0$ (first order of Taylor expansion). Then
$$frac{x^{cos x}}x =frac{x^{1+o(1)}}x=frac{xcdot x^{o(1)}}x=x^{o(1)}longrightarrow_{xto0}1$$
$endgroup$
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
add a comment |
$begingroup$
$cos x= 1+o(1)$ when $xto 0$ (first order of Taylor expansion). Then
$$frac{x^{cos x}}x =frac{x^{1+o(1)}}x=frac{xcdot x^{o(1)}}x=x^{o(1)}longrightarrow_{xto0}1$$
$endgroup$
$cos x= 1+o(1)$ when $xto 0$ (first order of Taylor expansion). Then
$$frac{x^{cos x}}x =frac{x^{1+o(1)}}x=frac{xcdot x^{o(1)}}x=x^{o(1)}longrightarrow_{xto0}1$$
edited Jan 8 at 16:55
answered Jan 8 at 16:45
Lorenzo B.Lorenzo B.
1,8602520
1,8602520
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
add a comment |
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
This is quite wrong: $y=x+o(1)$ does not imply $x^y=x+o(1)$, and $frac{o(1)}x$ does not necessarily converge to $0$.
$endgroup$
– Did
Jan 8 at 16:48
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
I should have corrected it now
$endgroup$
– Lorenzo B.
Jan 8 at 16:56
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
$begingroup$
Yeah, except that now, you pushed everything in the last step $x^{o(1)}longrightarrow_{xto0}1$, which happens to be wrong in general. Sorry but this is not a guessing game...
$endgroup$
– Did
Jan 8 at 16:59
add a comment |
$begingroup$
You may also use the following facts:
- $lim_{xto 0}frac{cos x-1}{x} = cos'(0) = -sin(0) = 0$
- $lim_{xto 0}xln x = 0$
So, you get
$$ln frac{x^{cos x}}{x} = (cos x - 1)cdot ln x = frac{(cos x - 1)}{x}cdot x ln x stackrel{xto 0^+}{longrightarrow}0cdot 0 = 0$$
Hence, $limlimits_{x to 0^{+}}frac{x^{cos x}}{x} = e^0 = 1$.
$endgroup$
add a comment |
$begingroup$
You may also use the following facts:
- $lim_{xto 0}frac{cos x-1}{x} = cos'(0) = -sin(0) = 0$
- $lim_{xto 0}xln x = 0$
So, you get
$$ln frac{x^{cos x}}{x} = (cos x - 1)cdot ln x = frac{(cos x - 1)}{x}cdot x ln x stackrel{xto 0^+}{longrightarrow}0cdot 0 = 0$$
Hence, $limlimits_{x to 0^{+}}frac{x^{cos x}}{x} = e^0 = 1$.
$endgroup$
add a comment |
$begingroup$
You may also use the following facts:
- $lim_{xto 0}frac{cos x-1}{x} = cos'(0) = -sin(0) = 0$
- $lim_{xto 0}xln x = 0$
So, you get
$$ln frac{x^{cos x}}{x} = (cos x - 1)cdot ln x = frac{(cos x - 1)}{x}cdot x ln x stackrel{xto 0^+}{longrightarrow}0cdot 0 = 0$$
Hence, $limlimits_{x to 0^{+}}frac{x^{cos x}}{x} = e^0 = 1$.
$endgroup$
You may also use the following facts:
- $lim_{xto 0}frac{cos x-1}{x} = cos'(0) = -sin(0) = 0$
- $lim_{xto 0}xln x = 0$
So, you get
$$ln frac{x^{cos x}}{x} = (cos x - 1)cdot ln x = frac{(cos x - 1)}{x}cdot x ln x stackrel{xto 0^+}{longrightarrow}0cdot 0 = 0$$
Hence, $limlimits_{x to 0^{+}}frac{x^{cos x}}{x} = e^0 = 1$.
answered Jan 8 at 17:11
trancelocationtrancelocation
12.2k1826
12.2k1826
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066368%2flimit-lim-limits-x-to-0-fracx-cos-xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you try with $x^{cos x -1}$?
$endgroup$
– ecrin
Jan 8 at 16:19
2
$begingroup$
Hint: $(ln{x})(cos{x}-1) rightarrow 0$.
$endgroup$
– Mindlack
Jan 8 at 16:20
$begingroup$
But the limit is still $0^0$
$endgroup$
– violettagold
Jan 8 at 16:23