If $m(E)=m_*(E_1)+m_*(E_2)$ , then $E_1$ and $E_2$ are measurable
$begingroup$
Suppose $E$ is measurable with $m(E) lt infty$ , and $$E=E_1 cup E_2 , E_1 cap E_2 text{is empty}$$ Show that if $m(E)=m_*(E_1)+m_*(E_2)$ , then $E_1$ and $E_2$ are measurable.
My attempt:
Since $E_2=E-E_1$ , it suffice to prove $E_1$ is measurable . And for $E_1$ , since $m_*(E_1)le m(E) lt infty$ , for any $epsilon$ , we can find an open set $O$ such taht $E_1 subset O$ and $m(O)-m_*(E_1) lt epsilon$ , but how to show that $m_*(O-E_1)lt epsilon$ ?
real-analysis lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Suppose $E$ is measurable with $m(E) lt infty$ , and $$E=E_1 cup E_2 , E_1 cap E_2 text{is empty}$$ Show that if $m(E)=m_*(E_1)+m_*(E_2)$ , then $E_1$ and $E_2$ are measurable.
My attempt:
Since $E_2=E-E_1$ , it suffice to prove $E_1$ is measurable . And for $E_1$ , since $m_*(E_1)le m(E) lt infty$ , for any $epsilon$ , we can find an open set $O$ such taht $E_1 subset O$ and $m(O)-m_*(E_1) lt epsilon$ , but how to show that $m_*(O-E_1)lt epsilon$ ?
real-analysis lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Suppose $E$ is measurable with $m(E) lt infty$ , and $$E=E_1 cup E_2 , E_1 cap E_2 text{is empty}$$ Show that if $m(E)=m_*(E_1)+m_*(E_2)$ , then $E_1$ and $E_2$ are measurable.
My attempt:
Since $E_2=E-E_1$ , it suffice to prove $E_1$ is measurable . And for $E_1$ , since $m_*(E_1)le m(E) lt infty$ , for any $epsilon$ , we can find an open set $O$ such taht $E_1 subset O$ and $m(O)-m_*(E_1) lt epsilon$ , but how to show that $m_*(O-E_1)lt epsilon$ ?
real-analysis lebesgue-measure
$endgroup$
Suppose $E$ is measurable with $m(E) lt infty$ , and $$E=E_1 cup E_2 , E_1 cap E_2 text{is empty}$$ Show that if $m(E)=m_*(E_1)+m_*(E_2)$ , then $E_1$ and $E_2$ are measurable.
My attempt:
Since $E_2=E-E_1$ , it suffice to prove $E_1$ is measurable . And for $E_1$ , since $m_*(E_1)le m(E) lt infty$ , for any $epsilon$ , we can find an open set $O$ such taht $E_1 subset O$ and $m(O)-m_*(E_1) lt epsilon$ , but how to show that $m_*(O-E_1)lt epsilon$ ?
real-analysis lebesgue-measure
real-analysis lebesgue-measure
asked Jan 8 at 16:43
J.GuoJ.Guo
3979
3979
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $epsilon>0$ be arbitrarily given and $U_i$, $i=1,2$ be open sets such that $E_isubset U_i$ and $$
m_*E_ile mU_i<m_*E_i +epsilon
$$ for $i=1,2$. Since $
Esubset U_1cup U_2,
$ we have $$
mE leq m(U_1cup U_2)=mU_1+mU_2-m(U_1cap U_2).
$$ This gives $m(U_1cap U_2)le mU_1+mU_2-mE<2epsilon$ by the assumption that $mE=m_*E_1+m_* E_2$. Now, observe that
$$
U_isetminus E_i subset left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright).
$$ This implies
$$begin{eqnarray}
m_*(U_isetminus E_i)&le& m_*left( left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright)right)\
&le& m(U_1cap U_2)+m(left(U_1cup U_2right)setminus E)\
&le& 2epsilon +m(U_1cup U_2)-mE\
&le& 2epsilon + mU_1+mU_2-mE<4epsilon.
end{eqnarray}$$ Since $epsilon>0$ was arbitrary, it says that $E_i$ are measurable for $i=1,2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066408%2fif-me-m-e-1m-e-2-then-e-1-and-e-2-are-measurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $epsilon>0$ be arbitrarily given and $U_i$, $i=1,2$ be open sets such that $E_isubset U_i$ and $$
m_*E_ile mU_i<m_*E_i +epsilon
$$ for $i=1,2$. Since $
Esubset U_1cup U_2,
$ we have $$
mE leq m(U_1cup U_2)=mU_1+mU_2-m(U_1cap U_2).
$$ This gives $m(U_1cap U_2)le mU_1+mU_2-mE<2epsilon$ by the assumption that $mE=m_*E_1+m_* E_2$. Now, observe that
$$
U_isetminus E_i subset left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright).
$$ This implies
$$begin{eqnarray}
m_*(U_isetminus E_i)&le& m_*left( left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright)right)\
&le& m(U_1cap U_2)+m(left(U_1cup U_2right)setminus E)\
&le& 2epsilon +m(U_1cup U_2)-mE\
&le& 2epsilon + mU_1+mU_2-mE<4epsilon.
end{eqnarray}$$ Since $epsilon>0$ was arbitrary, it says that $E_i$ are measurable for $i=1,2$.
$endgroup$
add a comment |
$begingroup$
Let $epsilon>0$ be arbitrarily given and $U_i$, $i=1,2$ be open sets such that $E_isubset U_i$ and $$
m_*E_ile mU_i<m_*E_i +epsilon
$$ for $i=1,2$. Since $
Esubset U_1cup U_2,
$ we have $$
mE leq m(U_1cup U_2)=mU_1+mU_2-m(U_1cap U_2).
$$ This gives $m(U_1cap U_2)le mU_1+mU_2-mE<2epsilon$ by the assumption that $mE=m_*E_1+m_* E_2$. Now, observe that
$$
U_isetminus E_i subset left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright).
$$ This implies
$$begin{eqnarray}
m_*(U_isetminus E_i)&le& m_*left( left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright)right)\
&le& m(U_1cap U_2)+m(left(U_1cup U_2right)setminus E)\
&le& 2epsilon +m(U_1cup U_2)-mE\
&le& 2epsilon + mU_1+mU_2-mE<4epsilon.
end{eqnarray}$$ Since $epsilon>0$ was arbitrary, it says that $E_i$ are measurable for $i=1,2$.
$endgroup$
add a comment |
$begingroup$
Let $epsilon>0$ be arbitrarily given and $U_i$, $i=1,2$ be open sets such that $E_isubset U_i$ and $$
m_*E_ile mU_i<m_*E_i +epsilon
$$ for $i=1,2$. Since $
Esubset U_1cup U_2,
$ we have $$
mE leq m(U_1cup U_2)=mU_1+mU_2-m(U_1cap U_2).
$$ This gives $m(U_1cap U_2)le mU_1+mU_2-mE<2epsilon$ by the assumption that $mE=m_*E_1+m_* E_2$. Now, observe that
$$
U_isetminus E_i subset left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright).
$$ This implies
$$begin{eqnarray}
m_*(U_isetminus E_i)&le& m_*left( left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright)right)\
&le& m(U_1cap U_2)+m(left(U_1cup U_2right)setminus E)\
&le& 2epsilon +m(U_1cup U_2)-mE\
&le& 2epsilon + mU_1+mU_2-mE<4epsilon.
end{eqnarray}$$ Since $epsilon>0$ was arbitrary, it says that $E_i$ are measurable for $i=1,2$.
$endgroup$
Let $epsilon>0$ be arbitrarily given and $U_i$, $i=1,2$ be open sets such that $E_isubset U_i$ and $$
m_*E_ile mU_i<m_*E_i +epsilon
$$ for $i=1,2$. Since $
Esubset U_1cup U_2,
$ we have $$
mE leq m(U_1cup U_2)=mU_1+mU_2-m(U_1cap U_2).
$$ This gives $m(U_1cap U_2)le mU_1+mU_2-mE<2epsilon$ by the assumption that $mE=m_*E_1+m_* E_2$. Now, observe that
$$
U_isetminus E_i subset left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright).
$$ This implies
$$begin{eqnarray}
m_*(U_isetminus E_i)&le& m_*left( left(U_1cap U_2right)cup left(left(U_1cup U_2right)setminus Eright)right)\
&le& m(U_1cap U_2)+m(left(U_1cup U_2right)setminus E)\
&le& 2epsilon +m(U_1cup U_2)-mE\
&le& 2epsilon + mU_1+mU_2-mE<4epsilon.
end{eqnarray}$$ Since $epsilon>0$ was arbitrary, it says that $E_i$ are measurable for $i=1,2$.
answered Jan 8 at 17:47
SongSong
14.2k1634
14.2k1634
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066408%2fif-me-m-e-1m-e-2-then-e-1-and-e-2-are-measurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown